Cho a = b + c và c = \(\frac{bd}{b-d}\) (b khác 0; d khác 0)
Chứng minh rằng \(\frac{a}{b}\) = \(\frac{c}{d}\)
Bài 1: cho tỷ lệ thức a/b=c/d khác 1 và -1 và c khác 0. Hãy chứng minh:
A) \(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)
B) \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)
Bài 2: cho biết a=c+b và c=bd/b-d(b khác d khác 0). Hãy chứng minh a/b=c/d.
Bài 3:Hãy chứng minh c =0 khi \(\frac{a+b+c}{a+b-c}=\frac{a+b+c}{a-b-c}\) với b khác 0
cho a, b, c, d khác 0,c+d=1 và \(\frac{c}{a}+\frac{d}{b}=\frac{1}{ac+bd}\)
CMR a=b
Cho a=b+c và c=\(\frac{bd}{\left(b-d\right)}\)và (b;d khác 0). CM \(\frac{a}{b}\)=\(\frac{c}{d}\)
điều kiên:
b<>d <>0
=> c<>0
a=b+c
=> a<>0
*
c=(b.d):(b-d).
=> c*(b-d)=b*d
=>cb-cd=b*d
=>cb=cd+bd
=>=cb=d(b+c)=ad (vì b+c=a)
cb=ad (từ cái này xoay kiểu gì cũng được)
c:d=a:b
a/b=c/d >>>dpcm
c/a=d/b
Cho các số a;b;c;d Khác 0 và thỏa mãn : b2=ac; c2=bd; b3+c3+d3 khác 0
CMR : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Giải:
Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (1)
\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)
Từ (1) và (2) suy ra \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)
Cho a;b;c;d khác 0 , khác nhau :b2=ac:c2=bd và d3+c3+b3 khcs 0
cmr \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Cho a,b,c,d là 4 số khác 0 thoả mãn\(b^2=ac,c^2=bd\) và\(b^3+c^3+d^3\)khác 0. Chứng minh rằng:\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}=\frac{a}{d}\)
Câu hỏi của Lê Thị Trà MI - Toán lớp 7 - Học toán với OnlineMath Bạn xem bài làm tương tự ở link này nhé!
cho \(^{b^2=ac,c^2=bd}\)với b,c,d khác 0 và b+c+d=0 CMR:
\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
b2 = ac \(\Rightarrow\frac{a}{b}=\frac{b}{c}\)( 1 )
c2 = bd \(\Rightarrow\frac{b}{c}=\frac{c}{d}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
từ \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
Vậy ...
minh moi dang cau moi giup minh dc khong
Cho a,b,c,d là 4 số khác 0 thỏa mãn b2=ac, c2=bd và b3+c3+d3 khác 0. Chứng minh rằng: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
mày có thể tự suy nghĩ ra rùi đặt k rùi làm dễ vkl
Ủa cũng câu như thế vậy b^3+c^3+d^3=a/d
Cho các số a , b , c , d khác 0 và b3 + c3 + d3 khác 0 thỏa mãn : b2 = ac ; c2 = bd
Chứng minh rằng :
\(\frac{a^3+b^3+c^3}{b^3+c^3+d\text{ }^3}=\frac{a}{d}\)
Ta có \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
<=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
<=> \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(đpcm)
trả lời :
Ta có \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
<=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
<=> \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(đpcm)
^HT^
co a,b ,c ,d là 4 số khác nhau và khác 0 thỏa mãn: b^2=ac; c^2=bd và b^3+c^3+d^3\(\ne\)0
CMR: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)=\(\frac{a}{d}\)