Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bach bop
Xem chi tiết
Đoàn Thanh Bảo An
Xem chi tiết
Thư Nguyễn
Xem chi tiết
Sóc
26 tháng 8 2016 lúc 15:52

điều kiên: 
b<>d <>0 
=> c<>0 
a=b+c 
=> a<>0 

c=(b.d):(b-d). 
=> c*(b-d)=b*d 
=>cb-cd=b*d 
=>cb=cd+bd 
=>=cb=d(b+c)=ad (vì b+c=a) 
cb=ad (từ cái này xoay kiểu gì cũng được) 
c:d=a:b 
a/b=c/d >>>dpcm 
c/a=d/b

Nguyễn Tiến Dũng
Xem chi tiết
Nguyễn Huy Tú
14 tháng 12 2016 lúc 20:27

Giải:

Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (1)

\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)

Từ (1) và (2) suy ra \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)

Vua Hải Tặc Vàng
Xem chi tiết
Bùi Anh Khoa
Xem chi tiết
Nguyễn Linh Chi
1 tháng 11 2018 lúc 0:16

Câu hỏi của Lê Thị Trà MI - Toán lớp 7 - Học toán với OnlineMath Bạn xem bài làm tương tự ở link này nhé!

phamtruongan
Xem chi tiết
Thanh Tùng DZ
30 tháng 11 2017 lúc 18:52

b2 = ac \(\Rightarrow\frac{a}{b}=\frac{b}{c}\)( 1 )

c2 = bd \(\Rightarrow\frac{b}{c}=\frac{c}{d}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

từ \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

Vậy ...

phamtruongan
30 tháng 11 2017 lúc 19:22

minh moi dang cau moi giup minh dc khong

Slime Boy
26 tháng 12 2017 lúc 19:32

Ko t

Thắm Mẫn
Xem chi tiết
kagaj Naruto
15 tháng 2 2015 lúc 9:06

mày có thể tự suy nghĩ ra rùi đặt k rùi làm dễ vkl

 

KID_1412
7 tháng 12 2016 lúc 19:42

bạn đặt a ra dùi tính như thường

Nguyễn hữu đăng khoa
11 tháng 12 2017 lúc 19:32

Ủa cũng câu như thế vậy b^3+c^3+d^3=a/d

Member lỗi thời :>>...
Xem chi tiết
Xyz OLM
10 tháng 10 2021 lúc 9:53

Ta có \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng dãy tỉ số bằng nhau ta có : 

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(đpcm) 

Khách vãng lai đã xóa
Lê Mạnh Hùng
10 tháng 10 2021 lúc 9:53

trả lời :

Ta có \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng dãy tỉ số bằng nhau ta có : 

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(đpcm) 

^HT^

Khách vãng lai đã xóa
nguyen quynh trang
Xem chi tiết