cho a > hoặc = 2 ; b > hoặc = 2 . CMR a.b > hoặc = a+b
1)Ta có M:
3x^2-6x+17
X^2-2x+5
Tìm giá trị lớn nhất của M
2)cho 3 số a;b;c sao cho 0< hoặc =a< hoặc=2;0< hoặc =b< hoặc =2;0< hoặc =c< hoặc =2 và a+b+c=3 chứng minh rằng a^2+b^2+c^2+abc< hoặc =5
a,Cho A +B lớn hơn hoặc bằng 1.Chứng minh A^2 + B^2 lớn hơn hoặc bằng 1
b,Cho x^2 + y^2 =1.Chứng minh (x+y)^2 nhỏ hơn hoặc bằng 2
Câu a)
Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b
Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1
Câu b) Áp dụng BĐT Bunhiacopxki ta có
(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2
Dấu "=" xảy ra <=> x = y
câu1 : cần sửa lại là A2 + B2 \(\ge\frac{1}{2}\)
Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)
<=> A2 + B2 + 2A.B \(\le\) 2. (A2 + B2)
<=> 0 \(\le\) A2 + B2 - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng
b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm
cho a,b,c> hoặc=0 và a+b+c=2 CM 2 căn 2< hoặc= căn(a+b) + căn(b+c) + căn(c+a)< hoặc= 2 căn 3
Cho a,b,c là các số thỏa mãn /b-c/ < hoặc =1 ; /c/ < hoặc = 2; /a-1/ < hoặc = 3. CMR /ac-b/< hoặc = 7
Cho a,b,c là các số thỏa mãn /b-c/ < hoặc =1 ; /c/ < hoặc = 2; /a-1/ < hoặc = 3. CMR /ac-b/< hoặc = 7
Cho a,b,c là các số thỏa mãn /b-c/ < hoặc =1 ; /c/ < hoặc = 2; /a-1/ < hoặc = 3. CMR /ac-b/< hoặc = 7
cho 3 số a,b,c thoả mãn 0 < hoặc= a,b,c<hoặc =2 và a+b+c=3
chứng minh a^2+b^2+c^2< hoặc= 5
Vì \(0\le a,b,c\le2\)nên:
\(abc+\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow abc+2bc-abc+2ac-4c+2ab-4b-4a+8\ge0\)
\(\Leftrightarrow2bc+2ac+2ab-4\left(a+b+c\right)+8\ge0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)-12+8\ge0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)\ge4\)
Do đó: \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\le3^2-4=5\)
(Dấu "="\(\Leftrightarrow\)(a,b,c) là các hoán vị của (0,1,2))
cho 0<hoặc=a<hoặc =b<hoặc=c<hoặc=1.C/m a:(b.c+1)+b:(a.c+1)+c:(a.b+1)<hoặc =2