Tìm x,y biết : a, (x-1).(x^2+1)=0 ; b, x.y+3.x-2.y=11
tìm min A=(1+x)(1+1/y)+(1+y)(1+1/X) biết x^2 +y^2 =1;x>0,y>0
\(A=2+x+y+\frac{1}{x}+\frac{1}{y}+\frac{x}{y}+\frac{y}{x}\ge2+x+y+\frac{4}{x+y}+2\)
\(=4+\frac{2}{x+y}+\left(x+y\right)+\frac{2}{x+y}\)\(\ge4+2\sqrt{2}+\frac{2}{x+y}\)
Ta lại có
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\Rightarrow x+y\le\sqrt{2}\)
Suy ra \(A\ge4+2\sqrt{2}+\frac{2}{\sqrt{2}}=4+3\sqrt{2}\)
Đẳng thức xảy ra <=> \(x=y=\frac{1}{\sqrt{2}}\)
tìm x,y thuộc Z ,biêt: (2x-1).(2x+1)=-35
tìm c,y thuộc Z , biết: (x+1)^2 + (y+1)^2 + (x-y)^2 =2
tìm x,y thuộc Z, biết: (x^2-8).(x^2-15)<0
tìm x,y thuộc Z biết: x=6.y và|x|-|y|=60
tìm a,b thuộc Z biết: |a|+|b|<2
1. Tìm x
|x+1|+|x+2|+|x+3|+|x+4|=5.x
2. Tìm GTNN của
A=|x+2000|+|x-2018|
3. Tìm x,y,z biết
a) |x+1|+|2.y-4|=0
b) |x-y+1|+(y-3)^2=0
c) |x+y|+|x-z|+|2.x-1|=0
B1: Đk: 5x ≥ 0 => x ≥ 0
Vì |x + 1| ≥ 0 => |x + 1| = x + 1
|x + 2| ≥ 0 => |x + 2| = x + 2
|x + 3| ≥ 0 => |x + 3| = x + 3
|x + 4| ≥ 0 => |x + 4| = x + 4
=> |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x
=> x + 1 + x + 2 + x + 3 + x + 4 = 5x
=> 4x + 10 = 5x
=> x = 10
B2: Ta có: |x - 2018| = |2018 - x|
=> A=|x + 2000| + |2018 - x| ≥ |x + 2000 + 2018 - x| = |4018| = 4018
Dấu " = " xảy ra <=> (x + 2000)(x - 2018) ≥ 0
Th1: \(\hept{\begin{cases}x+2000\ge0\\x-2018\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge-2018\\x\le2018\end{cases}}\Rightarrow-2018\le x\le2018\)
Th2: \(\hept{\begin{cases}x+2000\le0\\x-2018\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le-2018\\x\ge2018\end{cases}}\)(vô lý)
Vậy GTNN của A = 4018 khi -2018 ≤ x ≤ 2018
B3:
a, Vì |x + 1| ≥ 0 ; |2y - 4| ≥ 0
=> |x + 1| + |2y - 4| ≥ 0
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+1=0\\2y-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy...
b, Vì |x - y + 1| ≥ 0 ; (y - 3)2 ≥ 0
=> |x - y + 1| + (y - 3)2 ≥ 0
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=-1\\y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=-1\\y=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy...
c, Vì |x + y| ≥ 0 ; |x - z| ≥ 0 ; |2x - 1| ≥ 0
=> |x + y| + |x - z| + |2x - 1| ≥ 0
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\x-z=0\\2x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=z\\x=\frac{1}{2}\end{cases}\Leftrightarrow}}\hept{\begin{cases}\frac{1}{2}+y=0\\x=z=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{-1}{2}\\x=z=\frac{1}{2}\end{cases}}\)
coi lại mới thấy trình bày ngờ-u :))
B1: Đk: 5x ≥ 0 => x ≥ 0
=> x + 1 > 0 => |x + 1| = x + 1
=> x + 2 > 0 => |x + 2| = x + 2
=> x + 3 > 0 => |x + 3| = x + 3
=> x + 4 > 0 => |x + 4| = x + 4
Ta có: |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x
=> .... Làm tiếp như dưới
a) Tìm x biết:(x-1)(x-2)(x-3)(x-6) + x2=169
b) Tìm x;y nguyên biết: x2 - 2y2 + xy - 3x + 3y -1 = 0
c) Tìm x;y biết: x3+ y3 - 3xy +1 = 0 và 2x + 3y = 2018
bài 1:tìm x thuộc Z biết
a,|x+2|lớn hơn hoặc bằng 5
b,|x+1|>2
bài2 tìm x thuộc Z biết
a,|x-1|-x+1=0
b,|2-x|-2=x
c,|x+7|=|x-9|
bài 3:tìm x thuộc Z biết
a,|x+25|+|-y+5|=0
b,|x-40|+|x-y+10|lớn hơn hoặc bằng 0
Bài 2:
a, |x-1| -x +1=0
|x-1| = 0-1+x
|x-1| = -1 + x
\(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)
\(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)
\(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)
x = 2-x
2x = 2
x = 2:2
x=1
b, |2-x| -2 = x
|2-x| = x+2
\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)
2-x = x+2
x+x = 2-2
2x = 0
x = 0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
tìm x,y biết:
a)|x^2-4|+|x^2-2x|=0
b)|x-y-1|+|x+1/2|=0
1 . Tìm x thuộc N biết :
a,(x - 1 ) . ( x - 5 ) < 0
b, ( - 7 ) . ( x - 3 ) < 0
c , ( x2 - 1 ) . ( x2 - 9 ) < 0
d, ( x - 1 ) . ( x - 3 ) < 0
2 , Tìm các số nguyên x , y biết :
a , ( x + 2 ) . ( y - 1 ) = ( - 3 )
b , ( x - 7 ) . ( y + 2 ) = 0
a) với x<1 thì x-1<0& x-5<0=> (x-1)(x-5) >0 => loại
1<x<5 thì x-1>0 và x-5<0 => (x-1)(x-5) <0 nhận
với x> 5 thì x-1>0& x-5>0=> (x-1)(x-5) >0 => loại
KL nghiệm 1<x<5
b) x-3>0 => x>3
c) (x-1)(x+1)(x-3)(x+3)<0
lý luận như (a) {-3...-1...1...3}
KL Nghiệm: -3<x<-1 hoạc -1<x<3
bài 2:
x+2={-3.-1,1,3}=> x={-5,-3,-1,1}
y-1={1,3,-3,-1}=> y={2,4,-2,0}
KL nghiệm (x,y)=(-5,2);(-3,4);(-1,-2); (1,0)
2,
b, ( x -7 ) . ( y + 2) =0
suy ra x -7 =0 hoặc y + 2 =0
suy ra x =7 hoặc x =-2
chỗ ghi chữ hoặc bạn dùng dấu hoặc thay thế nhé
vì tren máy tính nen mình khonng biết ghi dấu hoặc
a,(x - 1 ) . ( x - 5 ) < 0
=>x - 1 và x - 5 khác dấu
Trường hợp 1:
x-1>_0(>_là lớn hơn hoặc bằng ;<_là nhỏ hơn hoặc bằng)
x-5<_0
=>
a) A=x(x^3+y)-x^2(x^2-y)-x^2(y-1) tại x=-10 và y=5
b) Tìm x biết 5x^3-3x^2+10x-6=0
c) Tìm x biết x^2+y^2-2x+4y+5=0
Giải đầy đủ hộ mình nhé :
Bài 1: Tìm x,y,;biết
a, x+y=2
b,y+z=3
c,z+x=-5
Bài 2 : Tìm x,y thuộc Z, biết (x-3).(y+2)=-5
Bài 3 : Tìm a thuộc Z, biết a.(a+2)<0
Bài 4 : Tìm x thuộc Z, sao cho (x2 -4).(x2-10)<0
Bài 5 Tìm x thuộc Z, biết (x2-1).(x2-4)<0
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Cho x>0; y>0. Tìm GTNN của \(A=\sqrt{x}+\sqrt{y}\) biết \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\).