Tìm các số tự nhiên a và b thỏa mãn (5a + 7b) / 6a +5b = 29/28 và (a; b) = 1
Tìm các số tự nhiên a và b thỏa mãn 5a+7b/6a+5b=29/28
Tìm các số tự nhiên a và b để thỏa mãn 5a+7b chia hết cho 29/6a+5b chia hết cho 28 và (a, b=1)
ban hoc truong nao vay
Tìm các số tự nhiên a và b thỏa mãn các điều kiện :
(a;b) = 1 và 5a + 7b/6a + 5b = 29/28
Tìm các số tự nhiên a và b thỏa mãn \(\frac{5a+7b}{6a+5b}=\:\frac{29}{28}va\left(a;b\right)=1\)
Để thỏa mãn điều kiện trên thì :
( 5a + 7b ) x 28 = 29 x ( 6a + 5b )
140a + 196b = 174a + 145b
=> 34a = 41b
=> a = 41 ; b = 34
Tìm các số tự nhiên a và b để thỏa mãn \(\frac{5a+7b}{6a+5b}=\frac{29}{28}\)và (a,b)=1
Tìm các số tự nhiên a , b thỏa mãn các điều kiện sau :
( a ; b ) = 1 và \(\frac{5a+7b}{6a+5b}=\frac{28}{29}\)
\(\frac{5a+7b}{6a+5b}=\frac{28}{29}\)
\(\Leftrightarrow29\left(5a+7b\right)=28\left(6a+5b\right)\)
\(\Leftrightarrow145a+203b=168a+140b\)
\(\Leftrightarrow63b=23a\)
\(\Leftrightarrow\frac{a}{b}=\frac{63}{23}\)
Mà \(\left(a;b\right)=1\) nên \(a=63;b=23\)
Tìm các số tự nhiên a và b thỏa mãn: \(\frac{5a+7b}{6a+5b}=\frac{29}{28}\) và ( a, b ) =1
Tìm các số tự nhiên a và b để thỏa mãn \(\frac{5a+7b}{6a+5b}\)=\(\frac{29}{28}\)a,b =1
soyeon_Tiểubàng giải1 tháng 10 2016 lúc 20:35
Ta có:
5a + 7b/6a + 5b = 29/28
=> (5a + 7b).28 = (6a + 5b).29
=> 140a + 196b = 174a + 145b
=> 196b - 145b = 174a - 140a
=> 51b = 34a
=> 3b = 2a
=> a/b = 3/2
Mà (a,b)=1; a,b thuộc N
=> a = 3; b = 2
Vậy a = 3; b = 2
bài của bạn Nguyễn Văn Hòa hợp con nhà bà lý luôn
=) =) =) =) =)
Hi hi quá hợp lý như bạn Lâm
Cho và là hai số tự nhiên, ƯCLN(a;b) = 1 và thỏa mãn 5a+7b/6a+5b = 29/28. Khi đó ab = ?