Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Dương
Xem chi tiết
Đinh Đức Hùng
22 tháng 2 2017 lúc 18:29

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{ca+cb+c^2+ab}{abc\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b\left(a+c\right)+c\left(a+c\right)\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Rightarrow a+b=0\Rightarrow a=-b\Rightarrow a^{2009}=-b^{2009}\)

\(\frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}=\frac{1}{c^{2009}}\) (1)

\(\frac{1}{a^{2009}+b^{2009}+c^{2009}}=\frac{1}{c^{2009}}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}=\frac{1}{a^{2009}+b^{2009}+c^{2009}}\) (đpcm)

võ thị quỳnh trang
Xem chi tiết
võ thị quỳnh trang
28 tháng 11 2019 lúc 22:51

co ai biet ko? Neu biet thi giup mk voi

Khách vãng lai đã xóa
thungan nguyen
Xem chi tiết
Vũ Minh Tuấn
29 tháng 7 2019 lúc 18:07

Đề sửa lại là: Chứng minh \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\) nhé.

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}=\frac{a+b+c}{2.\left(a+b+c\right)}.\)

Xét 2 trường hợp:

TH1: \(a+b+c=0\) thì \(\left\{{}\begin{matrix}b+c=-a\\a+c=-b\\a+b=-c\end{matrix}\right.\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\), không phụ thuộc vào các giá trị \(a;b;c\) (1)

TH2: \(a+b+c\ne0\) thì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}.\)

\(\Rightarrow\left\{{}\begin{matrix}2a=b+c\\2b=a+c\\2c=a+b\end{matrix}\right.\)

Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\), không phụ thuộc vào các giá trị \(a;b;c\) (2)

Từ (1) và (2) => \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\) không phụ thuộc vào các giá trị của \(a;b;c.\)

Chúc bạn học tốt!

thungan nguyen
29 tháng 7 2019 lúc 17:37

Ngan Vu Thi

Gi Cung Duoc
Xem chi tiết
Lê Minh Anh
26 tháng 4 2017 lúc 11:28

Theo đề ra\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

Mà: a + b + c khác 0  => a = b = c

=> P = (1 + 1)(1 + 1)(1 + 1) = 2 . 2 . 2 = 8

Thượng Hoàng Yến
Xem chi tiết
Đỗ Ngọc Hải
6 tháng 1 2018 lúc 20:53

Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)
a=b=c=2017

Thanh Tùng DZ
6 tháng 1 2018 lúc 20:55

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\frac{a}{b}=1\Rightarrow a=b\)\(\frac{b}{c}=1\Rightarrow b=c\)\(\frac{c}{a}=1\Rightarrow c=a\)

Suy ra : a = b = c = 1

Nếu a = 2017 thì : b = c = 2017

Kêt Hôn Nhé
6 tháng 1 2018 lúc 20:59

A/b=b/c=c/a   va a.b.c khac 0

Ap dung ting chat day ti so bang nhau ta co

A/.........=a+b+c/b+c+a=1

=)a/b=1=)a=b

     b/c=1=)b=c

      Mà a=b,b=c=)a=b=c(1)

 Mà   a=2017(2)

Tù 1và 2=)a=b=c=2017

Vay b=2017,c=2017

pham dinh dung
Xem chi tiết
Mai Lê Hiền Anh
4 tháng 9 2019 lúc 16:31

Ta có:M=\(\frac{a^{10}b^7c^{2000}}{b^{2017}}\)=\(\frac{a^{10}}{b^{10}}\)x\(\frac{b^7}{b^7}\)x\(\frac{c^{2000}}{b^{2000}}\)=\(\left(\frac{a}{b}\right)^{10}\)x\(\left(\frac{c}{b}\right)^{2000}\)=\(\left(\frac{a}{b}\right)^{10}\)x\(\left(\frac{b}{c}\right)^{-2000}\)

Mà \(\frac{a}{b}\)=\(\frac{b}{c}\)nên M=\(\left(\frac{a}{b}\right)^{10}\)x\(\left(\frac{a}{b}\right)^{-2000}\)=\(\left(\frac{a}{b}\right)^{-1990}\)

pham dinh dung
4 tháng 9 2019 lúc 20:35

 tinh m ma

Mai Lê Hiền Anh
5 tháng 9 2019 lúc 10:35

tính rồi mà

huyen vu thi
Xem chi tiết
Trần Quang Đài
22 tháng 3 2016 lúc 21:14

Ta có:\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\frac{a}{b-c}=\frac{b}{a-c}+\frac{c}{b-a}=\frac{b^2-ab+ac-c^2}{\left(c-a\right)\left(a-b\right)}\)

\(\frac{\Leftrightarrow a}{\left(b-c\right)^2}=\frac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\) Nhân hai vế với \(\frac{1}{b-c}\)

Tương tự ta có:\(\frac{b}{\left(c-a\right)^2}=\frac{c^2-bc+ba-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(2\right);\frac{c}{\left(a-b\right)^2}=\frac{a^2-ac+bc-b^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(3\right)\)

Cộng (1),(2),(3) ta được đpcm

Phạm Bùi Quang Huy
22 tháng 3 2016 lúc 21:01

ai giai minh k cho

Phạm Bùi Quang Huy
22 tháng 3 2016 lúc 21:02

e ma ban lop may

Ran Mori
Xem chi tiết
Tran Thi Tam Phuc
Xem chi tiết
Lê Thị Tường Vy
3 tháng 3 2016 lúc 21:57

a = 3

b = 3

c = 3

Nguyễn Thị Yến Nhi
4 tháng 3 2016 lúc 19:25

mi ghi lộn đề ak phúc 

Tran Thi Tam Phuc
6 tháng 3 2016 lúc 21:47

mi dien ah, lon cai j, dung rui ma

chau duong phat tien
Xem chi tiết
Đinh Đức Hùng
28 tháng 2 2017 lúc 18:28

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)

\(\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)

\(\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow a=b=c\)

\(\Rightarrow\frac{a}{b}=1;\frac{b}{c}=1;\frac{c}{a}=1\)

\(\Rightarrow M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)