Dường thẳng đi qua trunh điểm các cạnh đối AB ,CD của tứ giác ABCD. X các đường thẳng AD; BC theo thứ tự ở I và K. C/M :IA/ID=KB/KC
Đường thẳng đi qua trung điểm của hai cạnh đối AB và CD của tứ giác ABCD cắt các đường thẳng AD, BC lần lượt tại I và K. CM: IA.KC=ID.KB
Đường thẳng đi qua trung điểm các cạnh đối AB,CD của tứ giác ABCD cắt các đường thẳng AD,BC theo thứ tự ở I,K. CMR \(\frac{IA}{ID}=\frac{KB}{KC}\)
Cho tứ giác ABCD có AB=CD và AB,CD không song song với nhau. Chứng minh rằng đường thẳng đi qua trung điểm các cạnh BC và AD tạo với đường thẳng AB và CD những góc nhọn bằng nhau.
Tham khảo nha, tuy ko trùng đề lắm
Gọi trung điểm dường cheo AC, BD lần lượt là M, N
MN cắt AB, CD lần lượt ở I, K
Ta cần chứng minh góc NIB = góc MKC
Lấy H là trung điểm BC. Nối MH, NH.
Xét tam giac ABC có AM = MC ; CH = HB => MH là đường trung bình tam giác ABC => MH =AB/2 (1) và MH // AB => góc KMH = góc INH (2)
chung minh tuong tu ta có: NH = CD/2 (3)và NH // CD =>góc INH = góc MKC (4)
Mat khac từ (1)và (3) ta có NH = MH vì đều bằng một nửa AB và CD => tam giác MHN cân tại H => góc NMH = góc MNH =>góc KMH = góc INH (vì kể với 2 góc bằng nhau) (5)
Từ (3)(4)(5) => góc MKC = góc NIB (đpcm)
Cho tứ giác lồi ABCD, các cạnh AB và CD bằng nhau nhưng không song song với nhau. chứng minh rằng:
a)Đường thẳng đi qua trung diểm các cạnh BC và AD tạo với các đường thẳng AB và CD những góc nhọn bằng nhau
b)Đường thẳng đi qua trung điểm các đường chéo AC và BD tạo với các cạnh AB và CD những góc nhọn bằng nhau
. Cho tứ giác ABCD có AD=BC.Đường thẳng đi qua hai trung điểm MN của AB và CD cắt các đường thẳng AD,BC theo thứ tự P và Q.CMR: ^APM=^PQM
Cho tứ giác ABCD. Các đường chéo AC và BD cắt nhau tại O. Các cạnh AD và BC kéo dài cắt nhau tại E. Biết AC _|_ AD, DB _|_ BC.
a) Chứng minh rằng đường thẳng d qua các trung điểm OE và CD là trục đối xứng của cạnh AB.
b) Tứ giác ABCD phải có điều kiện gì để d và OE trùng nhau?
Cho tứ giác ABCD có AD = BC
a) Đường thẳng đi qua trung điểm M, N của các cạnh AB, CD cắt AD, BC lần lượt tại E và F. Chứng minh \(\widehat{AEM}=\widehat{BFM}\)
b) Đường thảng đi qua trung điểm của các đường chéo cúng tạo với AD và BC các góc bằng nhau
cho tứ giác ABCD, điểm E thuộc cạnh AB các tam giác EAD, EBC có diện tích nhỏ hơn nửa diện tích tứ giác ABCD. Kẻ các đường thẳng đi qua A và song song với ED, đi qua B và song song với EC, chúng cắt đường thẳng CD theo thứ tự tại M,N. Gọi I là trung điểm của MN. CMR: đoạn thẳng EI chia tứ giác ABCD thành 2 phần có diện tích bằng nhau
Cho tứ giác ABCD, có các đường chéo AC và BD cắt nhau tại O, AD vuông
góc AC, BD vuông góc với CB, Gọi E là giao điểm của AD và BC, d là đường
thẳng đi qua các trung điểm của EO và CD
a) CMR: A và B đối xứng nhau qua đường thẳng d
b) Tứ giác ABCD sẽ như thế nào nếu D trùng EO