cho a,b,c nguyên tố cùng nhau. Chứng minh A= ab+bc+cd ; B =a+b+c và C= a.b.c nguyên tố cùng nhau.
cho a,b,c nguyên tố cùng nhau. Chứng minh A =ab+bc+ac ; B = a+b+c ; C= a.b.c nguyên tố cùng nhau.
cho a,b,c nguyên tố cùng nhau. chứng minh A = ab+bc+ac, N =abc, M=a+b+c nguyên tố cùng nhau
Cho các số a;b;c nguyên tố cùng nhau. Chứng minh rằng ba số: A = ab+bc+ca; B = a+b+c; C=abc nguyên tố cùng nhau
ê cô đã giải cho cậu bài này chưa bày mình với please mình đang rất cần
goi UCLN( a,b , c) la d
ta co
a chia het cho d , b chia het cho d , c chia het cho d
suy ra a.bchia het cho d
b.c chia het cho d
ca cung chia het cho d
suy ra abc cung chia het cho d
va a+b+c cung chia het cho d
trái với (a,b,c)=1
suy ra (ab+bc+ca; a+b+c;abc)=1
vay UCLN(A,B,C )=1
cùng nhau trong hoàn cảnh chúngthuộc z
đê abcbang nhau suy ra ac+cb=ab
cho a,b,c là các số nguyên tố cùng nhau.
chứng minh A= ab+ ac +bc và B= a+b+c và C=abc nguyên tố cùng nhau
cho ba số nguyên tố a,b,c .chứng minh ab+bc+ac,a+b+c,abc nguyên tố cùng nhau
Cho a;b nguyên tố cùng nhau.
a) Chứng minh a^n + b^n và ab nguyên tố cùng nhau
b)Chứng minh a^n và b nguyên tố cùng nhau
Biết a, b,c là 3 số tự nhiên đôi một nguyên tố cung nhau. Chứng minh rằng ab+bc+ca; a+b+c và số abc cũng nguyên tố cùng nhau.
giả sử abc và ab+bc+ca không nguyên tố cùng nhau
=> tồn tại d là số nguyên tố và d là ước chung của abc và ab+bc+ca
abc chia hết cho d mà a,b,c nguyên tố cùng nhau từng đôi một nên có 3 TH:
TH1: a chia hết cho d => ab,ac chia hết cho d
mà ab+bc+ca chia hết cho d
=> bc chia hết cho d => b hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH2: b chia hết cho d => ba,bc chia hết cho d
mà ab+bc+ca chia hết cho d
=> ac chia hết cho d => a hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH3: c chia hết cho d => ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
=> ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
vậy: giả thiết đưa ra là sai
kết luận: abc và ab+bc+ca nguyên tố cùng nhau
Cho a , b , c thuộc N , đôi 1 nguyên tố cùng nhau . Chứng minh rằng ƯCLN ( ab + bc + ac , abc ) = 1
Biết a, b,c là 3 số tự nhiên đôi một nguyên tố cung nhau. Chứng minh rằng ab+bc+ca; a+b+c và số abc cũng nguyên tố cùng nhau.
c chia hết cho d => ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
=> ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
vậy: giả thiết đưa ra là sai
kết luận: abc và ab+bc+ca nguyên tố cùng nhau
cho a và b nguyên tố cùng nhau. chứng minh a+b và ab nguyên tố cùng nhau
Gọi k là ước nguyên tố của ab và a+b (k∈N*)
=> ab chia hết cho k và a+b chia hết cho k.
Vì ab chia hết cho k => a chia hết cho k và b chia hết cho k (Vì k là số nguyên tố)
Do a và b là 2 số nguyên tố cùng nhau nên:
Giả sử: a chia hết cho k thì b chia hết cho k (vì a+b chia hết cho k)
=> k ∈ ƯC(a;b). Mà ƯCLN(a,b)=1
=> k=1(trái với k là số nguyên tố)
Do đó ab và a+b không thể có ước nguyên tố chung.
=> ƯCLN(ab,a+b)=1