So sánh A và B:
a) A = \(\frac{10^{19}+1}{10^{20}+1}\); B = \(\frac{10^{20}+1}{10^{21}+1}\)
b) A = \(\frac{9^{99}+1}{9^{100}+1}\); B = \(\frac{10^{98}-1}{10^{99}-1}\)
So sánh A và B biết:
A=\(\frac{10^{17}+1}{10^{18}+1}\), B=\(\frac{10^{18}+1}{10^{19}+1}\)
Ta có: \(A=\frac{10^{18}+1}{10^{19}+1}>\frac{10.\left(10^{17}+1\right)}{10.\left(10^{18}+1\right)}=\frac{10^{17}+1}{10^{18}+1}\)
Vậy A < B
So sánh A và B biết:
A=\(\frac{10^{17}+1}{10^{18}+1}\), B=\(\frac{10^{18}+1}{10^{19}+1}\)
Vì \(\frac{10^{18}+1}{10^{19}+1}< 1\Rightarrow B=\frac{10^{18}+1}{10^{19}+1}< \frac{10^{18}+1+9}{10^{19}+1+9}\)
\(\Rightarrow B< \frac{10^{18}+10}{10^{19}+10}\)
\(\Rightarrow B< \frac{10\left(10^{17}+1\right)}{10\left(10^{18}+1\right)}\)
\(\Rightarrow B< \frac{10^{17}+1}{10^{18}+1}\)
\(\Rightarrow B< A\)
Vậy A > B.
So sánh A và B biết:
\(A=\frac{10^{2011}+1}{10^{2012}+1};B=\frac{10^{2012}+1}{10^{2013}+1}\)
So sánh 2 phân số sau $\frac{10^{2011}+10}{10^{2012}+10}v\text{à}\frac{10^{2012}-10}{10^{2013}-10}$102011+10102012+10 và102012−10102013−10
kick dzô chữ xanh là được!! OK
Ta có :
10. A = \(\frac{10.\left(10^{2011}+1\right)}{10^{2012}+1}\)
= \(\frac{10^{2012}+10}{10^{2012}+1}\)
= \(\frac{10^{2012}+1+9}{10^{2012}+1}\)
= \(\frac{10^{2012}+1}{10^{2012}+1}-\frac{9}{10^{2012}+1}\)
= 1 - \(\frac{9}{10^{2012}+1}\)
10 . B = \(\frac{10.\left(10^{2012}+1\right)}{10^{2013}+1}\)
= \(\frac{10^{2013}+10}{10^{2013}+1}\)
= \(\frac{10^{2013}+1+9}{10^{2013}+1}\)
= 1 - \(\frac{9}{10^{2013}+1}\)
Vì \(\frac{9}{10^{2012}+1}\) >\(\frac{9}{10^{2013}+1}\) nên 10.A > 10.B
=> A >B
Vậy ...........
Hông quy đồng mẫu số, hãy so sánh A và B, biết
A= \(\frac{-9}{10^{2010}}+\frac{-19}{10^{2011}}\)
B= \(\frac{-9}{10^{2011}}+\frac{-19}{10^{2010}}\)
mình đang cần gấp
Ta có: \(A=\frac{-9}{10^{2010}}+\frac{-19}{10^{2011}}=\frac{-9}{10^{2010}}-\frac{9}{10^{2011}}-\frac{10}{10^{2011}}\)
\(=\frac{-9}{10^{2010}}-\frac{9}{10^{1011}}-\frac{1}{10^{2010}}=\frac{-9}{10^{2011}}+\frac{-10}{10^{2010}}\)
Ta thấy : \(\frac{10}{10^{2010}}< \frac{19}{10^{2010}}\Rightarrow\frac{-10}{10^{2010}}>\frac{-19}{10^{2010}}\)
\(\Rightarrow\frac{-9}{10^{2011}}+\frac{-10}{10^{2010}}>\frac{-9}{10^{2011}}+\frac{-19}{10^{2010}}\)
Hay \(A>B\)
Vậy ...
Sa sánh A và B:
a) A=\(\frac{19^{30}+5}{19^{31}+5}\)và B=\(\frac{19^{31}+5}{19^{32}+5}\)
b)A=\(\frac{2^{18}-3}{2^{20}-3}\)và B=\(\frac{2^{20}-3}{2^{22}-3}\)
Lưu ý: ko tính kết quả chỉ so sánh thôi
Càng rõ càng tốt
Thankyouverymuch
So sánh : A=1/20^2+1/21^2+1/22^2+...+1/30^2 và B=1/19
Ta có:
\(\dfrac{1}{20^2}< \dfrac{1}{20\cdot19}=\dfrac{1}{19}-\dfrac{1}{20}\)
\(\dfrac{1}{21^2}< \dfrac{1}{20\cdot21}=\dfrac{1}{20}-\dfrac{1}{21}\)
\(...\)
\(\dfrac{1}{30^2}< \dfrac{1}{29\cdot30}=\dfrac{1}{29}-\dfrac{1}{30}\)
\(\Rightarrow A< \dfrac{1}{19}-\dfrac{1}{30}< \dfrac{1}{19}\)
Cho A = \(\frac{10^{2014}+1}{10^{2015}+1}\)
B = \(\frac{10^{2016}+1}{10^{2017}+1}\)
So sánh A và B
\(10A=\frac{10^{2015}+1+9}{10^{2015}+1}=1+\frac{9}{10^{2015}+1}\)
\(10B=\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)
Vì \(\frac{9}{10^{2015}+1}>\frac{9}{10^{2017}+1}\Rightarrow10A>10B\Rightarrow A>B\)
So sánh :
A = \(\frac{10^{11}-1}{10^{12}-1}\) và B= \(\frac{10^{10}+1}{10^{11}+1}\)
help me
\(10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
\(10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}=\frac{10^{11}+1}{10^{11}+1}+\frac{9}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
vì 1012-1>1011+1
=>\(\frac{9}{10^{12}-1}<\frac{9}{10^{11}+1}\)
=>A<B
Ta có:\(10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
\(10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
Vì \(1-\frac{9}{10^{12}-1}<1+\frac{9}{10^{11}+1}\)
Nên A<B
a) \(A=1+2+2^2+2^3+...+2^{100}\) \(B=2^{201}\)
\(2A=2\left(1+2+2^2+2^3+...+2^{100}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{201}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{201}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)
\(2A-A=2^{101}-1\)
\(A=2^{201}-1\)
Ta có 2201 > 2201 - 1 => B > A => 2201 > 1 + 2 + 22 + 23 +...+ 1100
b) 2100 = 231 . 263 . 26 = 231 . (29)7 . (22)3 = 231 . 5127 . 43 (1)
1031 = 231 . 528 . 53 = 231 . (54)7 . 53 = 231 . 6257 . 53 (2)
Từ (1) , (2) => 231 . 5127 . 43 < 231 . 6257 . 53 ( vì 5127 < 6257 và 43 < 53 )
=> 2100 < 1031
e) Ta có:
2100 = (210)10 = 102410
1030 = (103)10 = 100010
Vì 102410 > 100010 => 2100 > 1030