tìm đa thức bậc 3 P(x) cho biết khi chia P(x) cho các đa thức (x-1) ; (x-2) ; (x-3) đều được dư là 6 . P(-1) = -18
tìm một đa thức bậc ba P(x) cho biết khi chia P(x) cho các đa thức ( x - 1); ( x - 2 ); ( x - 3 ) đều được dư là 6 và P ( -1 ) = -18
BÀi 1:Tìm đa thức P(x) bậc 3 biết P(x) chia hết cho đa thức x-1 và x-2 và khi chia cho đa thức x2 -x+1 được dư là 2x-3.
Bài 2: Tìm các số thực a, b để đa thức P(x) = x3 + ax2 +bx +4 chia hết cho đa thức (x-2)2
Mọi người giúp mình với, cảm ơn mọi người nhiều!!!
tìm đa thức f(x) có bậc 2 biết : tại x=-1 đa thức nhận giá trị là 16 và khi lần lượt chia f(x) cho các đa thức (x-1);(x+2);(x-4) đều có số dư là 6
Tìm 1 đa thức P(x) có bậc 3 . Biết đa thức P(x) chia cho các nhị thức x-1;x-2;x-3 đều có số dư là 6 và giá trị của đa thức P(x) tại x=-1 là 18
Ta có: P(x) -6 chia hết cho 3 nhị thức x-1;x-2;x-3 nên x=1;x=2;x=3 là nghiệm của P(x)-6.
Vì P(x)-6 cũng bậc 3 như P(x) nên ta phải có biểu diễn:
P(x)-6=a(x-1)(x-2)(x-3)
=> P(x)=a(x-1)(x-2)(x-3)+6
P(-1)= -18 nên -24a+6=-18 <=> a =1
Vậy P(x)=(x-1)(x-2)(x-3)+6 =x^3-6x^2+11x
Ta có: P(x) -6 chia hết cho 3 nhị thức x-1;x-2;x-3 nên x=1;x=2;x=3 là nghiệm của P(x)-6.
Vì P(x)-6 cũng bậc 3 như P(x) nên ta phải có biểu diễn:
P(x)-6=a(x-1)(x-2)(x-3)
=> P(x)=a(x-1)(x-2)(x-3)+6
P(-1)= -18 nên -24a+6=-18 <=> a =1
Vậy P(x)=(x-1)(x-2)(x-3)+6 =x^3-6x^2+11x
1. a) Biết rằng đa thức P (x) khi chia cho các đa thức x -2, x-3 đc dư lần lượt là -2 và 3, tìm dư trong phép chia đa thức P (x) cho đa thức x2 - 5x + 6
2 Tìm đa thức P(x) bậc 3 biết khi P(x) chia hết cho các đa thức x - 1, x-2 và khi chia cho đa thức x2 - x + 1 thì đc dư là 2x - 3
Bài 1 : Đa thức chia là bậc 2 do đó đa thức dư nhiều nhất sẽ là bậc 1 .
Ta có : \(P\left(x\right)=Q\left(x\right).\left(x^2-5x+6\right)+ax+b\)
Theo bài ra ta có hệ phương trình :
\(\left\{{}\begin{matrix}P\left(2\right)=2a+b=-2\\P\left(3\right)=3a+b=-3\end{matrix}\right.\)
Giải hệ phương trình ta tìm được :
\(\left\{{}\begin{matrix}a=-1\\b=0\end{matrix}\right.\)
Vậy số dư trong phéo chia là \(-x\)
Bài 2 : Mình suy nghĩ sau !
Chúc bạn học tốt
Tìm đa thức bậc 2 f(x) biết f(-1) = 16 và khi lần lượt chia f(x) cho các đa thức ( x – 1); ( x + 2) và ( x – 4 ) đều có số dư là 6
Cho đa thức f(x ) bậc 3, đa thức f(x) chia x-1 dư 2011, chia x-2 dư 2012
Tìm dư khi chia f(x) cho (x-1)(x-2)
1,Cho đa thức bậc 4 f(x) biết f(1)=f(2)=f(3)=0, f(4)=6 và f(5)=72. Tìm dư f(2010) khi chia cho 10
2,Cho đa thức bậc 4 f(x) có hệ số bậc cao nhất bằng 1 và f(1)=10,f(2)=20 và f(3)=30. Tính f(10)+f(-6)
3,Tìm đa thức f(x) biết rằng f(x) chia cho x-3 thì dư 2, f(x) chia cho x+4 thì dư 9 còn f(x) chia cho x^2+x-12 thì được thương là x^2+3 và còn dư.
Cho đa thức g(x)=8x3 - 18x2 +x +6
a) Tìm các nghiệm của đa thức g(x)
b) Tìm các hệ số a, b, c của đa thức bậc ba f(x)=x3 + ax2 +bx+c, biết rằng khi chia đa thức f(x) cho đa thức g(x) thì được đa thức dư là r(x)=8x2+4x+5.
Giải MTCT
a) \(8x^3-18x^2+x+6\)
\(=8x^3-16x^2-2x^2+4x-3x+6\)
\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(8x^2-2x-3\right)\)
\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)
\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)
\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)
=> g(x) có 3 nghiệm là
x-2=0 <=> x=2
2x+1=0 <=> x=-1/2
4x-3=0 <=> x=3/4
vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}
b) tự làm đi (mk ko bt làm)