CM NẾU \(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}=\frac{1}{ABC}\);\(\cdot\left(ABC\ne0\right)\)VÀ\(A+B+C\ne0\)THÌ \(\frac{1}{A^n}+\frac{1}{B^n}+\frac{1}{C^n}=\frac{1}{A^n+B^n+C^n}\)
VỚI n LẺ
CM NẾU \(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}=\frac{1}{ABC}\);\(\cdot\left(ABC\ne0\right)\)VÀ\(A+B+C\ne0\)THÌ \(\frac{1}{A^n}+\frac{1}{B^n}+\frac{1}{C^n}=\frac{1}{A^n+B^n+C^n}\)
VỚI n LẺ
vô đây mà xem ; /hoi-dap/question/125436.html?pos=554506
BĐT nhé ae: Với các ẩn dương nhé
1. abc=1. CM \(sigma\left(\frac{1}{2a^3+b^3+c^3+2}\right)\le\frac{1}{2}\)
2.\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)CM \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
2/ GT <=> \(\left(a+b+c\right)abc\ge ab+bc+ca\)
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)abc}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
Sao hôm thứ 7 nghỉ
a) Cho (a + b + c + 1)(a - b - c + 1) = (a - b + c - 1)(a + b - c - 1)
Cm : a = bc
b) Cho a = b + c. Cm \(\frac{a^3+b^3}{a^3+b^3}=\frac{a+b}{a+c}\)
c) cho a + b + c = abc;\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=c\)
Cm \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
1) Cho \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)
CM: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\)
2) Cho \(abc\ne1\)và \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ac+1}{a}\)
CM: a=b=c
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)
\(< =>\frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c=a+b+c\)
\(< =>\frac{a^2+a\left(b+c\right)}{b+c}+\frac{b^2+b\left(c+a\right)}{c+a}+\frac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)
\(< =>\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\) (chia cả 2 vế cho a+b+c)
Cho tam giác ABC . Lay D thuộc BC. Kẻ Bx//AD và Bx cắt CA ở I . Kẻ Cy //AD và Cy cắt BA ở K
a) CM: \(\frac{1}{BI}+\frac{1}{CK}=\frac{1}{AD}\)
b) Nếu \(\widehat{BAC=120^0}\)và AD là đường phân giác tam giác ABC
CM: \(\frac{1}{AB}+\frac{1}{AC}=\frac{1}{AO}\)
c) Nếu \(\widehat{BAC=90^0}\)và AD là đường phân giác tam giác ABC
CM: \(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
cho a,b,c>0
Cm: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}=\frac{c^2}{c^2(a+b)}+\frac{a^2}{a^2(b+c)}+\frac{b^2}{b^2(c+a)}+\frac{(\sqrt[3]{abc})^2}{2abc}\)
\(\geq \frac{(c+a+b+\sqrt[3]{abc})^2}{c^2(a+b)+a^2(b+c)+b^2(c+a)+2abc}=\frac{(a+b+c+\sqrt[3]{abc})^2}{(a+b)(b+c)(c+a)}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c$
Cho a,b,c dương. CM
\(\frac{1}{a\left(1+b\right)}+\frac{1}{b\left(1+c\right)}+\frac{1}{c\left(1+a\right)}\ge\frac{3}{1+abc}\)
Cho a,b,c dương. CM
\(\frac{1}{a\left(1+b\right)}+\frac{1}{b\left(1+c\right)}+\frac{1}{c\left(1+a\right)}\ge\frac{3}{1+abc}\)
Quy đồng full :)
\(\frac{1}{a\left(1+b\right)}+\frac{1}{b\left(1+c\right)}+\frac{1}{c\left(1+a\right)}\ge\frac{3}{1+abc}\)
\(\Leftrightarrow\frac{1+abc}{a\left(1+b\right)}+\frac{1+abc}{b\left(1+c\right)}+\frac{1+abc}{c\left(1+a\right)}\ge3\)
\(\Leftrightarrow\left[\frac{1+abc}{a\left(1+b\right)}+1\right]+\left[\frac{1+abc}{b\left(1+c\right)}+1\right]+\left[\frac{1+abc}{c\left(1+a\right)}+1\right]\ge6\)
\(\Leftrightarrow\frac{1+abc+ab+a}{a\left(1+b\right)}+\frac{1+abc+bc+b}{b\left(1+c\right)}+\frac{1+abc+c+ac}{c\left(1+a\right)}\ge6\)
\(\Leftrightarrow\frac{ab\left(c+1\right)+\left(a+1\right)}{a\left(1+b\right)}+\frac{bc\left(a+1\right)+\left(b+1\right)}{b\left(1+c\right)}+\frac{ac\left(b+1\right)+\left(c+1\right)}{c\left(1+a\right)}\ge6\)
\(\Leftrightarrow\frac{b\left(c+1\right)}{1+b}+\frac{a+1}{a\left(1+b\right)}+\frac{c\left(a+1\right)}{1+c}+\frac{b+1}{b\left(1+c\right)}+\frac{a\left(b+1\right)}{1+a}+\frac{c+1}{c\left(1+a\right)}\ge6\)
Ta có vế trái tương đương với:
\(\left[\frac{b\left(c+1\right)}{1+b}+\frac{b+1}{b\left(c+1\right)}\right]+\left[\frac{a\left(b+1\right)}{1+a}+\frac{1+a}{a\left(b+1\right)}\right]+\left[\frac{c\left(a+1\right)}{1+c}+\frac{1+c}{c\left(a+1\right)}\right]\)
\(\ge2+2+2=6\)
=> đpcm
\(Cm:\frac{a}{bcd+1}+\frac{b}{acd+1}+\frac{c}{abd+1}+\frac{d}{abc+1}\le3\)