Cho tam giác ABC có ba cạnh a,b,c. Chứng minh rằng:
\(\dfrac{a^2+b^2+c^2}{2abc}=\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)
Cho tam giác ABC. Chứng minh rằng:
a) Nếu \(\frac{b^2-a^2}{2c}=b.cosA-a.cosB\) thì tan giác ABC cân tại C
b) Nếu \(\frac{sinB}{sinC}=2.cosA\) thì tam giác ABC cân tại B
c) Nếu a=2b.cosC thì tam giác ABC cân tại A
d) Nếu \(\frac{b}{cosB}+\frac{c}{cosC}=\frac{a}{sinB.sinC}\) thì tam giác ABC vuông tại A
e) Nếu S=2R2.sinB.sinC thì tam giác ABC vuông tại A
cho tam giác abc có sinb+sinc=2sina và cosb +cosc = 2cosa . chung minh tam giac abc đều
Cho tam giác ABC có các cạnh và góc thỏa mãn hệ thức: \(\frac{1-cosC}{1+cosC}=\frac{a-b}{a+b}\) . Chứng minh rằng tam giác ABC vuông
cho tam giác ABC, gọi S là diện tích của tam giác ABC. CM:
\(cotA=\frac{b^2+c^2-a^2}{4S}\)
\(cotA+cosB+cosC=\frac{a^2+b^2+c^2}{4S}\)
Cho tam giác ABC thỏa mãn hệ thức b+c=2a. Trong các mênh đề sau, mệnh đề nào đúng?
A. cosB+cosC= 2cosA B. sinB+sinC= 2sinA
C. sinB+sinC= 1/2sinA D. sinB+cosC=2sinA
Cho tam giác ABC thỏa mãn:
\(\dfrac{a+b}{6}=\dfrac{b+c}{5}=\dfrac{c+a}{7}\)
Tính cosA, cosB, cosC
Cho tam giác ABC. Chứng minh rằng:
Nếu \(\dfrac{b^2-a^2}{2c}=bcosA-acosB\) thì tam giác ABC cân tại C.