a: Xét ΔCMB và ΔCED có
góc CMB=góc CED
góc MCB=góc ECD
=>ΔCMB đồng dạng với ΔCED
=>CM/CE=CB/CD
=>CM*CD=CE*CB
a: Xét ΔCMB và ΔCED có
góc CMB=góc CED
góc MCB=góc ECD
=>ΔCMB đồng dạng với ΔCED
=>CM/CE=CB/CD
=>CM*CD=CE*CB
Cho hai đường tròn (O;R) và (I;r) tiếp xúc ngoài tại M (R>r).Kẻ tiếp tuyến chung ngoài BC (B∈(O);C∈(I) ).Tiếp tuyến chung trong tại M cắt BC tại K.Kẻ đường kính BE của đường tròn (O).
a)Chứng minh BK=KC và góc BME=90⁰
b)OK cắt BM tại N;IK cắt CM tại P.Chứng minh NP//BC
c)Chứng minhBC= 2\(\sqrt[]{IM.IO-IK.IP}\)
Cho đường tròn (O; R). M là một điểm ở ngoài đường tròn sao cho OM = 2R. Tia MO cắt đường tròn ở A và B (A nằm giữa M và O). Từ M kẻ hai tiếp tuyến MC và MD với đường tròn (O) (C và D là hai tiếp điểm). Chứng minh:
1. Tứ giác MCOD nội tiếp và MO vuông góc CD tại H
2. Tam giác MCD là tam giác đều và tính độ dài cạnh của nó theo R
3. MA.MB = MH.MO
Cho đường tròn (O;R) có đường kính AB. Từ điểm C nằm ngoài (O) kẻ cát tuyến CNM vuông góc với AB tại H (H nằm giữa O và B); AC cắt đường tròn (O;R) tại điểm K khác A, hai dây MN và BK cắt nhau ở E
a) CM: tứ giác AHEK nội tiếp đường tròn
b) Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F. Chứng minh: tam giác NKF cân
Từ 1 điểm A ở ngoài đường tròn vẽ tiếp tuyến AB và cát tuyến ACD. Tia phân giác của góc BAC cắt BC;BD lần lượt M và N. Vẽ dây BF vuông góc với MN cắt MN tại H, cắt CD tại E. Chứng minh:
a, TAm giác ABE cân
b, BF là tia phân giác của góc CBD
c,FD^2=FE.FB
Bài 4: (3 điểm) Từ điểm M nằm ngoài (O,R), kẻ hai tiếp tuyến MA, MB tới đường tròn (A và
B là các tiếp điểm). Gọi N là trung điểm của MA; BN cắt (O) tại C. a/ Chứng minh: Tử giác MAOB nội tiếp và N * A ^ 2 =NB.NC . b/ Tia MC cắt (O) tại điểm thứ hai D. Chứng minh BD = AM. c/ Gọi I là trung điểm của CD; K là giao điểm của AB và CD, Chứng minh: MC .MD=MI.MK
Cho điểm A nằm ngoài đường tròn (O,R) từ A kẻ hai tiếp tuyến AB,AC và cát tuyến ADE( B,C là hai tiếp điểm ,O nằm trong góc BAE ) BC cắt OA tại I
a/Chứng minh Tứ giác ABOC nội tiếp và OA vuông góc với BC
b/Chứng minh OI.IA =BC^2/4 và AB.AC = AD.AE
c/Vẽ đường kính BK của (O),tia KD cắt OA tại F. Chứng minh FB vuông góc EB
1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau
2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA
3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.
4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!
Cho đường tròn (O;R) và cát tuyến CAB. Từ điểm chính giữa E của cung lớn AB kẻ đường kính EF cắt AB tại D, CE cắt (O) tại điểm thứ hai là I. Các dây AB và FI cắt nhau tại K. CMR
1) Bốn điểm E,D,K,I cùng thuộc một đường tròn.
2) CI.CE=CK.CD
3) IC là tia phân giác góc ngoài tại đỉnh I của tam giác ABI
cho điểm A ở ngoài đường tròn (O;R). Kẻ tiếp tuyến AB (B là tiếp điểm ) và cát tuyến AMN ( M nằm giữ A và N ). Gọi I là trung điểm của MN . Qua B kẻ dây cung vuông góc vs OA tại H và cắt ( O) tại C
a, Cho R= 6cm , OA = 10cm. Tính độ dài AB
b, Chứng minh : 4 điểm A, B , I,O cùng thuộc 1 đường tròn . Xác định tâm bán kính của đường tròn đó .
Cho đường tròn tâm O bán kính r. Gọi M là điểm bất kì nằm ngoài đường tròn tâm O kẻ cát tuyến bất kì MAB với (0) ( A nằm giữ M và B). Kẻ đường kính BC. Đường MC cắt (0) tại điểm thứ hai là D ( C nằm giữa M và D). Gọi N là giao điểm của AC và BD
a) CMR: BACD là tứ giác nội tiếp và góc AMC = DNC
b) CMR: BC vuông góc MN tại H
c) CMR: DCHN là tứ giác nội tiếp rồi chứng minh: MC .MD + NA .NC = MN2
d) Cho biết góc DNC = 450 Tính diện tích viên phân chắn cung AD theo R