Trong không gian Oxyz, cho hai điểm A(1;2;-3) và B(2;0;-1) Tìm tất cả các giá trị thực của tham số m để hai điểm A và B nằm khác phía so với mặt phẳng x+2y+mz+1=0
A. m ϵ (2 ;3)
B. m ∈ ( - ∞ ; 2 ] ∪ [ 3 ; + ∞ )
C. m ∈ ( - ∞ ; 2 ) ∪ ( 3 ; + ∞ )
D. m ϵ [2 ;3]
Trong không gian Oxyz, cho hai điểm A 1 ; 2 ; − 3 , B 2 ; 0 ; − 1 . Tìm tất cả các giá trị thực của tham số m để hai điểm A, B nằm khác phía so với mặt phẳng x + 2 y + m z + 1 = 0.
A. m ∈ 2 ; 3 .
B. m ∈ − ∞ ; 2 ∪ 3 ; + ∞ .
C. m ∈ − ∞ ; 2 ∪ 3 ; + ∞ .
D. m ∈ 2 ; 3 .
Trong không gian Oxyz, cho hai điểm A 1 ; 2 ; − 3 ; B 2 ; 0 ; − 1 . Tìm giá trị của tham số m để hai điểm A, B nằm khác phía so với mặt phẳng x + 2 y + m z + 1 = 0
A. m ∈ 2 ; 3
B. m ∈ 2 ; 3
C. m ∈ − ∞ ; 2 ∪ 3 ; + ∞
D. m ∈ − ∞ ; 2 ∪ 3 ; + ∞
Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng P : x + 2 y - z + 3 = 0 và Q : x - 4 y + m - 1 z + 1 = 0 với m là tham số. Tìm tất cả các giá trị của tham số thực m để mặt phẳng (P) vuông góc với mặt phẳng (Q)
A. m = -6
B. m = -3
C. m = 1
D. m = 2
Trong không gian với hệ trục tọa độ Oxyz, cho A(1;0;−1),B(2;1;0). Tìm tất cả các giá trị thực của tham số m sao cho khoảng cách từ điểm A đến mặt phẳng x + y + mz − 3 = 0 bằng độ dài đoạn thẳng AB.
A. m = ± 1
B. m = 1
C. m = ± 2
D. m = 2
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 4 và hai điểm A(-1;2;-3); B(5;2;3). Gọi M là điểm thay đổi trên mặt cầu (S). Tính giá trị lớn nhất của biểu thức 2 M A 2 + M B 2
A. 5
B. 123
C. 65
D. 112
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;-2;0), B(-3;2;-4) và mặt phẳng P : x + 2 y + z − 3 = 0 . Gọi M(a,b,c) là điểm thuộc mặt phẳng (P) sao cho tam giác MAB cân tại M và có diện tích nhỏ nhất. Tính giá trị T = a 2 + b + c .
A. T = 1.
B. T = 2.
C. T = 0.
D. T = 3.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;1;2), M(3;0;0) và mặt phẳng (P):x+y+z-3=0. Đường thẳng ∆ đi qua điểm M, nằm trong mặt phẳng (P) sao cho khoảng cách từ điểm A đến đường thẳng ∆ là nhỏ nhất. Gọi u → = a , b , c là vectơ chỉ phương của ∆ với a, b, c là các số nguyên có ước chung lớn nhất bằng 1. Tính giá trị T=a+b+c.
A. T = -1
B. T = 1.
C. T = 0.
D. T = 2.
Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ a → = 3 ; - 2 ; m , b → = 2 ; m ; - 1 . Giá trị thực của tham số m để hai vectơ a → và b ⇀ vuông góc với nhau là
A. m=2
B. m=1
C. m=-2
D. m=-1