Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ u → = 1 ; 1 ; 2 , a → = 3 ; - 1 ; - 2 và v → = - 1 ; m ; m - 2 . Để vectơ u → , v → vuông góc với a → thì giá trị m bằng bao nhiêu?
A. m = 2
B. m = -2
C. m = 1
D. m = -1
Trong không gian với hệ tọa độ Oxyz, cho 3 vectơ a → = 1 ; m ; 2 , b → = m + 1 ; 2 ; 1 , c → = 0 ; m − 2 ; 2 . Điều kiện của m để 3 vectơ đã cho đồng phẳng là
A. m = 0
B. m = 2 5 m = 1
C. m = 1
D. m = 2 5
Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P): x + (m+1)y – 2z + m = 0 và (Q): 2x – y +3 = 0 với m là tham số thực. Để mặt phẳng (P) và (Q) vuông góc thì giá trị của m bằng bao nhiêu?
A. m = -5
B. m = 1
C. m = 3
D. m = -1
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm M(-2;-2;1), A(1;2;-3) và đường thẳng d : x + 1 2 = y - 5 2 = z - 1 . Tìm vectơ chỉ phương u → của dường thẳng D đi qua M, vuông góc với đường thẳng d, đồng thời cách điểm A một khoảng lớn nhất
A. u → = 4 ; - 5 ; - 2
B. u → = 1 ; 0 ; 2
C. u → = 8 ; - 7 ; 2
D. u → = 1 ; 1 ; - 4
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng ( P ) : x + ( m + 1 ) y - 2 z + m = 0 và ( Q ) : 2 x - y + 3 = 0 , với m là tham số thực. Để (P) và (Q) vuông góc với nhau thì giá trị thực của m bằng bao nhiêu?
A. m=-5
B. m=1
C. m=3
D. m=-1
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P) : x + ( m + 1)y - 2z + m = 0 và ( Q) : 2x - y + 3 = 0 với m là tham số thực. Để ( P ) và ( Q ) vuông góc thì giá trị của m bằng bao nhiêu
A. m = -5
B. m = 1
m = 3
D. m = -1
Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(-2;-2;1),A(1;2;-3) và đường thẳng d : x + 1 2 = y - 5 2 = z - 1 . Tìm một vectơ chỉ phương u → của đường thẳng ∆ đi qua M, vuông góc với đường thẳng d đồng thời cách điểm A một khoảng bé nhất.
A. u → = 2 ; 2 ; - 1
B. u → = 1 ; 7 ; - 1
C. u → = 1 ; 0 ; 2
D. u → = 3 ; 4 ; - 4
Trong không gian với hệ tọa độ Oxyz, cho các vectơ a → = 2 ; m - 1 ; 3 , b → = 1 ; 3 ; - 2 n . Tìm m, n để các vectơ a → , b → cùng hướng
A. m = 7 , n = - 3 4
B. m = 1 , n = 0
C. m = 7 , n = - 4 3
D. m = 4 , n = - 3
Trong không gian với hệ tọa độ Oxyz, cho hai điểm M - 2 ; - 2 ; 1 , A 1 ; 2 ; - 3 và đường thẳng d : x + 1 2 = y - 5 2 = z - 1 . Tìm vectơ chỉ phương u → của đường thẳng ∆ đi qua M, vuông góc với đường thẳng d đồng thời cách điểm A một khoảng bé nhất
A. u → = - 2 ; 1 ; 0
B. u → = 1 ; 0 ; 2
C. u → = 0 ; 4 ; 1
D. u → = - 1 ; 1 ; 3