`x(x+1)-x^2 = 3`
`=> x^2 + x - x^2 = 3`
`=> (x^2 - x^2) + x = 3`
`=> x = 3`
Vậy ...
`x(3x - 5) = (3x - 5)^2`
`=> 3x^2 - 5x = 9x^2 - 30x + 25`
`=> 9x^2 - 3x^2 - 30x + 5x + 25 = 0`
`=> (9x^2 - 3x^2)- (30x - 5x) + 25 = 0`
`=> 6x^2 - 25x + 25 = 0`
`=> (3x - 5)(2x - 5) = 0`
`=> x = 5/3` hoặc `x = 5/2`
Vậy ....
a) \(x\left(x+1\right)-x^2=3\Leftrightarrow x^2+x-x^2=3\Leftrightarrow x=3\)
b) \(x\left(3x-5\right)=\left(3x-5\right)^2\Leftrightarrow\left(3x-5\right)\left(-2x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{5}{2}\end{matrix}\right.\)
`x(x+1) - x^2 = 3`
`=>x^2 + x - x^2 = 3`
`=> x = 3`
Vậy `x =3`
`x(3x - 5) = (3x - 5)^2`
`=> x(3x - 5) - (3x - 5)^2 = 0`
`=> (3x - 5) (x - 3x + 5) = 0`
Th1 :
`3x - 5 = 0`
`=> 3x = 5`
`=> x = 5/3`
TH2:
`-2x + 5 =0`
`=> -2x = -5`
`=> x = 5/2`
a: \(x\left(x+1\right)-x^2=3\)
=>\(x^2+x-x^2=3\)
=>x=3
b: \(x\left(3x-5\right)=\left(3x-5\right)^2\)
=>\(\left(3x-5\right)^2-x\left(3x-5\right)=0\)
=>(3x-5)(3x-5-x)=0
=>(3x-5)(2x-5)=0
=>\(\left[{}\begin{matrix}3x-5=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{5}{2}\end{matrix}\right.\)