Đặt \(\begin{cases}S=x+y\\P=xy\end{cases}\) hpt đầu trở thành:
\(\begin{cases}S^2-P=9\\S+P=3\end{cases}\)\(\Leftrightarrow\begin{cases}S^2-P=9\\S=3-P\end{cases}\)
\(\Leftrightarrow\left(P-3\right)^2-P=9\)\(\Leftrightarrow P^2-7P+9-9=0\)
\(\Leftrightarrow P\left(P-7\right)=0\Leftrightarrow\)\(\left[\begin{array}{nghiempt}P=0\\P=7\end{array}\right.\)
Nếu \(P=0\Rightarrow S=3-P=3-0=3\)Suy ra hệ đầu tương đương \(\begin{cases}x+y=3\\xy=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=3\\y=0\end{cases}\) hoặc \(\begin{cases}x=0\\y=3\end{cases}\)
Nếu \(P=7\Rightarrow S=3-P=3-7=\left(-4\right)\)Suy ra hệ đầu tương đương \(\begin{cases}x+y=-4\\xy=7\end{cases}\) giải ra ta dc vô nghiệm
Vậy hệ pt trên có nghiệm (x;y) thỏa mãn là (3;0) và (0;3)
đối xứng loại 1 đặt ẩn bình lm j =))