Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Châu

giải pt:

\(x^4+2x^3+10x-25=0\)

giải hpt:

\(\begin{cases}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{cases}\)

Lightning Farron
3 tháng 12 2016 lúc 22:54

Bài 1:

\(x^4+2x^3+10x-25=0\)

\(\Leftrightarrow x^4+2x^3-5x^2+5x^2+10x-25=0\)

\(\Leftrightarrow x^2\left(x^2+2x-5\right)+5\left(x^2+2x-5\right)=0\)

\(\Leftrightarrow\left(x^2+5\right)\left(x^2+2x-5\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+5=0\\x^2+2x-5=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+5>0\forall x\rightarrow Vn\\\Delta_{x^2+2x-5}=2^2-\left[-4\left(1.5\right)\right]=24\end{array}\right.\)

\(\Leftrightarrow x_{1,2}=\frac{-2\pm\sqrt{24}}{2}\)

 

Lightning Farron
3 tháng 12 2016 lúc 23:04

Bài 2:

Đặt \(\begin{cases}\sqrt{x-1}=a\left(a\ge1\right)\\\sqrt{y}=b\left(b\ge0\right)\end{cases}\)(*) hệ đầu thành:

\(\begin{cases}3a+2b=13\left(1\right)\\2a-b=4\left(2\right)\end{cases}\).Từ \(\left(2\right)\Rightarrow b=2a-4\) thay vào (1) ta có:

\(\left(1\right)\Rightarrow3a+2\left(2a-4\right)=13\)

\(\Rightarrow3a+4a-8=13\Rightarrow7a=21\Rightarrow a=3\) (thỏa mãn)

\(a=3\Rightarrow b=2a-4=2\cdot3-4=2\) (thỏa mãn)

Thay \(\begin{cases}a=3\\b=2\end{cases}\) vào (*) ta có:

(*)\(\Leftrightarrow\begin{cases}\sqrt{x-1}=3\\\sqrt{y}=2\end{cases}\)\(\Leftrightarrow\begin{cases}x-1=9\\y=4\end{cases}\)\(\Leftrightarrow\begin{cases}x=10\\y=4\end{cases}\)


Các câu hỏi tương tự
Như
Xem chi tiết
Nguyễn Yến Vy
Xem chi tiết
Như
Xem chi tiết
trịnh khánh duy
Xem chi tiết
lê thị tiều thư
Xem chi tiết
lê thị tiều thư
Xem chi tiết
trịnh khánh duy
Xem chi tiết
michelle holder
Xem chi tiết
Nguyễn Châu
Xem chi tiết