Bài 1:
\(x^4+2x^3+10x-25=0\)
\(\Leftrightarrow x^4+2x^3-5x^2+5x^2+10x-25=0\)
\(\Leftrightarrow x^2\left(x^2+2x-5\right)+5\left(x^2+2x-5\right)=0\)
\(\Leftrightarrow\left(x^2+5\right)\left(x^2+2x-5\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+5=0\\x^2+2x-5=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+5>0\forall x\rightarrow Vn\\\Delta_{x^2+2x-5}=2^2-\left[-4\left(1.5\right)\right]=24\end{array}\right.\)
\(\Leftrightarrow x_{1,2}=\frac{-2\pm\sqrt{24}}{2}\)
Bài 2:
Đặt \(\begin{cases}\sqrt{x-1}=a\left(a\ge1\right)\\\sqrt{y}=b\left(b\ge0\right)\end{cases}\)(*) hệ đầu thành:
\(\begin{cases}3a+2b=13\left(1\right)\\2a-b=4\left(2\right)\end{cases}\).Từ \(\left(2\right)\Rightarrow b=2a-4\) thay vào (1) ta có:
\(\left(1\right)\Rightarrow3a+2\left(2a-4\right)=13\)
\(\Rightarrow3a+4a-8=13\Rightarrow7a=21\Rightarrow a=3\) (thỏa mãn)
\(a=3\Rightarrow b=2a-4=2\cdot3-4=2\) (thỏa mãn)
Thay \(\begin{cases}a=3\\b=2\end{cases}\) vào (*) ta có:
(*)\(\Leftrightarrow\begin{cases}\sqrt{x-1}=3\\\sqrt{y}=2\end{cases}\)\(\Leftrightarrow\begin{cases}x-1=9\\y=4\end{cases}\)\(\Leftrightarrow\begin{cases}x=10\\y=4\end{cases}\)