Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Như

a/ giải pt: \(\sqrt{3x-2}-\sqrt{x+7}=1\)

b/ giải hpt: \(\left\{{}\begin{matrix}\dfrac{1}{x-1}+\dfrac{1}{y-2}=2\\\dfrac{2}{y-2}-\dfrac{3}{x-1}=1\end{matrix}\right.\)

Hương Yangg
19 tháng 3 2017 lúc 14:40

a. Pt đã cho tương đương với:
\(\sqrt{3x-2}=\sqrt{x+7}+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x-2=x+7+1+2\sqrt{x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\2x-10=2\sqrt{x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x-5=\sqrt{x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\x^2-10x+25=x+7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\x^2-11x+18=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\\left(x-2\right)\left(x-9\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\\left[{}\begin{matrix}x=2\\x=9\end{matrix}\right.\end{matrix}\right.\)(Loại )
\(\Leftrightarrow x=9\)
Vậy pt có nghiệm x =9

Hương Yangg
19 tháng 3 2017 lúc 14:42

b. Đk: \(x\ne1;y\ne2\)
Đặt \(\dfrac{1}{x-1}=a;\dfrac{1}{y-2}=b\)
Khi đó hệ đã cho trở thành:
\(\left\{{}\begin{matrix}a+b=2\\-3a+2b=1\end{matrix}\right.\)
Giải hệ trên tìm a,b rồi từ đó tìm được x;y. Nhớ đối chiếu với Đk trước khi kết luận.


Các câu hỏi tương tự
lê thị tiều thư
Xem chi tiết
michelle holder
Xem chi tiết
lê thị tiều thư
Xem chi tiết
michelle holder
Xem chi tiết
lê thị tiều thư
Xem chi tiết
Lê Nguyễn Phương Hà
Xem chi tiết
lê thị tiều thư
Xem chi tiết
Trịnh Trọng Khánh
Xem chi tiết
lê thị tiều thư
Xem chi tiết