Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lê thị tiều thư

1) ghpt \(\left\{{}\begin{matrix}4x^3-y^3=x+2y\\52x^2-82xy+21y^2=-9\end{matrix}\right.\)

2) cho a,b,c thoa \(\left\{{}\begin{matrix}a,b,c>0\\a+2b+3c\ge10\end{matrix}\right.\) CMR \(a+b+c+\dfrac{3}{4a}+\dfrac{9}{8b}+\dfrac{1}{c}\ge\dfrac{13}{2}\)

Akai Haruma
5 tháng 3 2017 lúc 0:07

Bài 1)

Đưa về đồng bậc:

\(\left\{{}\begin{matrix}4x^3-y^3=x+2y\\52x^2-82xy+21y^2=-9\end{matrix}\right.\Rightarrow-9\left(4x^3-y^3\right)=\left(x+2y\right)\left(52x^2-82xy+21y^2\right)\)

\(\Leftrightarrow 8x^3+2x^2y-13xy^2+3y^3=0\)

\(\Leftrightarrow (4x-y)(x-y)(2x+3y)\Rightarrow \) \(\left[{}\begin{matrix}x=y\\4x=y\\2x=-3y\end{matrix}\right.\)

Thay từng TH vào hệ phương trình ban đầu ta thấy chỉ TH \(x=y\) thỏa mãn.

\(\Leftrightarrow (x,y)=(1,1),(-1,-1)\)là nghiệm của HPT

Akai Haruma
5 tháng 3 2017 lúc 0:17

Bài 2)

Đặt \(P=a+b+c+\frac{3}{4a}+\frac{9}{8b}+\frac{1}{c}\Rightarrow 4P=4a+4b+4c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)

\(\Leftrightarrow 4P=(a+2b+3c)+\left(3a+\frac{3}{a}\right)+\left(2b+\frac{9}{2b}\right)+\left(c+\frac{4}{c}\right)\)

Áp dụng bất đẳng thức AM-GM:

\(\left\{{}\begin{matrix}3a+\dfrac{3}{a}\ge6\\2b+\dfrac{9}{2b}\ge6\\c+\dfrac{4}{c}\ge4\end{matrix}\right.\)\(\Rightarrow 4P\geq (a+2b+3c)+6+6+4\geq 10+6+6+4=26\)

\(\Leftrightarrow P\geq \frac{13}{2}\) (đpcm)

Dấu bằng xảy ra khi \((a,b,c)=(1,\frac{3}{2},2)\)


Các câu hỏi tương tự
lê thị tiều thư
Xem chi tiết
michelle holder
Xem chi tiết
lê thị tiều thư
Xem chi tiết
michelle holder
Xem chi tiết
Lê Nguyễn Phương Hà
Xem chi tiết
Như
Xem chi tiết
Trịnh Trọng Khánh
Xem chi tiết
Trịnh Trọng Khánh
Xem chi tiết
lê thị tiều thư
Xem chi tiết