Trừ theo vế của (1) cho (2) được:
\(x^3-y^3=2\left(y-x\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+2\right)=0\)
Vì \(x^2+xy+y^2+2>0\forall x\) suy ra vô nghiệm
\(\Leftrightarrow x-y=0\Leftrightarrow x=y\). Thay vào (1) ta có:
\(x^3-2x+1=0\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\\Delta_{x^2+x-1}=1^2-\left[4\left(1.2\right)\right]=5\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x_{1,2}=\frac{-1\pm\sqrt{5}}{2}\end{array}\right.\)