b: Xét tứ giác ABDE có
H là trung điểm chung của AD và BE
=>ABDE là hình bình hành
=>DE//AB
=>DE vuông góc AC
c: Xét ΔCAD có
CH,DE là đường cao
CH cắt DE tại E
=>E là trực tâm
b: Xét tứ giác ABDE có
H là trung điểm chung của AD và BE
=>ABDE là hình bình hành
=>DE//AB
=>DE vuông góc AC
c: Xét ΔCAD có
CH,DE là đường cao
CH cắt DE tại E
=>E là trực tâm
Cho ΔABC vuông tại A (AB < AC). Vẽ AH ⊥ BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HD = HA.
a, Chứng minh ΔAHC = ΔDHC
b, Trên HC lấy điểm E sao cho HE = HB. Chứng minh E là trực tâm của ΔADC
c, Chứng minh AE + CD > BC.
Cho ΔABC vuông tại A (AB < AC). Vẽ AH ⊥ BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HD = HA.
a, Chứng minh ΔAHC = ΔDHC
b, Trên HC lấy điểm E sao cho HE = HB. Chứng minh E là trực tâm của ΔADC
c, Chứng minh AE + CD > BC.
* Lưu ý : Đề bài phải có vẽ hình và chứng minh và có cả giả thiết và kết luận.
Cho tam giác ABC vuông tại A có AB=6 cm ; AC= 8cm
a) Tính độ dài đoạn BC .
b) Vẽ AH vuông góc BC tại H . Trên HC lấy D sao cho HD= HB . Chứng minh AB =AD .
c) Trên tia đối của tia HA lấy điểm E sao cho EH= AH . Chứng minh ED vuông góc AC
cho tam giác ABC vuông tại A vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HD=HA.
a) Chứng minh tam giac AHC= tam giac DHC
b) Cho BC =10cm;AB=6cm. Tính độ dài cạnh AC
c) Trên HC lấy điểm E sao cho HE=HB. Chứng minh tam giác AHB= tam giác DHE và DE vuông góc với AC.
d) Chứng minh AE+CD>BC
. Cho tam giác ABC vuông tại A vẽ BC AH tại H. Trên tia đối của tia HA lấy điểm D sao cho
HD = HA.
a) Chứng minh ΔAHC = ΔDHC.
b) Cho BC = 10cm; AB = 6cm. Tính độ dài cạnh AC.
c) Trên HC lấy điểm E sao cho HE = HB. Chứng minh ΔAHB = ΔDHE và AC DE .
d) Chứng minh AE + CD > BC
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ AH vuông góc với BC tại H. Trên đoạn
thằng HC lấy điểm E sao cho HE = HB.
a) Chứng minh tam giác AHB = tam giác AHE
b) Trên tia đối tia HA lấy điểm D sao cho HD = HA . Chứng minh DE // AB.
c) Chứng minh góc EAC = góc EDC
d) Tia DE cắt AC tại M . Từ M kẻ đường thẳng song song với AD cắt DC tại N . Chứng
minh: A, E, N thằng hàng.
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ AH vuông góc với BC tại H. Trên đoạn
thằng HC lấy điểm E sao cho HE = HB.
a) Chứng minh tam giác AHB = tam giác AHE
b) Trên tia đối tia HA lấy điểm D sao cho HD = HA . Chứng minh DE // AB.
c) Chứng minh góc EAC = góc EDC
d) Tia DE cắt AC tại M, AE cắt DC tại N. Chứng minh MN vuông góc với BC từ đó suy ra MN//AD
e/ Trên tia AB và DE lần lượt lấy điểm I và K sao cho AI=DK. Chứng minh K,H,I thẳng hàng
giúp mik vs ạ mik đang cần gấp
Cho tam giác ABC vuông tại A, có góc B = 60 độ. Vẽ AH vuông góc với BC tại H. Trên AC lấy điểm D sao cho AD = AH. Gọi I là trung điểm của HD. Tia AI cắt HC tại K. Trên tia đối của HA lấy E sao cho HE = HA. Chứng minh H là trung điểm của BK
Cho ΔABC vuông tại A. Kẻ đường cao AH (H thuộc BC) , trên tia đối của tia HA lấy điểm E sao cho HA = HE.
a) Chứng minh ΔBHA = ΔBHE
b) Trên tia HC lấy điểm D sao cho HD = HB. Chứng minh ΔABD cân tại A.
c) Chứng tỏ rằng D là trực tâm của ΔACE.