a: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
HC chung
HA=HD
=>ΔAHC=ΔDHC
b: Xet tứ giác ABDE có
H là trung điểm chung của AD và BE
=>ABDE là hình bình hành
=>DE//AB
=>DE vuông góc AC
mà CE vuông góc AD
nên E là trực tâm
a: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
HC chung
HA=HD
=>ΔAHC=ΔDHC
b: Xet tứ giác ABDE có
H là trung điểm chung của AD và BE
=>ABDE là hình bình hành
=>DE//AB
=>DE vuông góc AC
mà CE vuông góc AD
nên E là trực tâm
Cho ΔABC vuông tại A (AB < AC). Vẽ AH ⊥ BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HD = HA.
a, Chứng minh ΔAHC = ΔDHC
b, Trên HC lấy điểm E sao cho HE = HB. Chứng minh E là trực tâm của ΔADC
c, Chứng minh AE + CD > BC.
* Lưu ý : Đề bài phải có vẽ hình và chứng minh và có cả giả thiết và kết luận.
Cho ΔABC vuông tại A (AB < AC). Vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HD = HA.
a) Chứng minh: ΔAHC = ΔBHC.
b) Trên HC lấy E sao cho HE = HB. Chứng minh DE vuông góc với AC.
c) Chứng minh E là trục tâm của ΔADC.
. Cho tam giác ABC vuông tại A vẽ BC AH tại H. Trên tia đối của tia HA lấy điểm D sao cho
HD = HA.
a) Chứng minh ΔAHC = ΔDHC.
b) Cho BC = 10cm; AB = 6cm. Tính độ dài cạnh AC.
c) Trên HC lấy điểm E sao cho HE = HB. Chứng minh ΔAHB = ΔDHE và AC DE .
d) Chứng minh AE + CD > BC
Cho ΔABC vuông tại A. Kẻ đường cao AH (H thuộc BC) , trên tia đối của tia HA lấy điểm E sao cho HA = HE.
a) Chứng minh ΔBHA = ΔBHE
b) Trên tia HC lấy điểm D sao cho HD = HB. Chứng minh ΔABD cân tại A.
c) Chứng tỏ rằng D là trực tâm của ΔACE.
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. a) Tính độ dài đoạn BC. b) Vẽ AH ⊥ BC tại H. Trên HC lấy D sao cho HD = HB. Chứng minh: AB = AD. c) Trên tia đối của tia HA lấy điểm E sao cho EH = AH. Chứng minh: ED ⊥ AC. d) Chứng minh BD < AE.
Cho ΔABC vuông tại A (AB < AC). Vẽ AH ⊥ BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HD = HA.
Chứng minh AE + CD > BC.
Cho ∆ABC vuông tại A có C=300. Vẽ AH BC tại H. Tính số đo HAB Trên cạnh AC lấy điểm Dsao cho AH = AD; E là trung điểm HD. Chứng minh: AE HD Tia AE cắt HC tại M. Chứng minh: MD // AB. Trên tia đối của tia HA lấy điểm I sao cho HA = HI. Chứng minh H là trung điểm của BM và D, M, I thẳng hàng.
Cho tam giác ABC vuông tại A có góc C bằng 30 độ vẽ AH vuông góc với BC trên tia đối của tia ha lấy điểm D sao cho HD = HD Trên tia HC lấy điểm E sao cho he = HB Chứng minh AE + CD lớn hơn BC
cho tam giác ABC vuông tại A vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HD=HA.
a) Chứng minh tam giac AHC= tam giac DHC
b) Cho BC =10cm;AB=6cm. Tính độ dài cạnh AC
c) Trên HC lấy điểm E sao cho HE=HB. Chứng minh tam giác AHB= tam giác DHE và DE vuông góc với AC.
d) Chứng minh AE+CD>BC