Giải bằng 2 cách:
cho tam giác ABC vuông tại A, đường cao AH = 30 cm, \(\dfrac{AB}{AC}\)=\(\dfrac{5}{6}\) .Tính HB,HC
1/Cho tam giác ABC vuông tại A, đường cao AH=30cm, \(\dfrac{AB}{AC}\)=\(\dfrac{5}{6}\). Tính HB,HC
2/Cho tam giác ABC có AB=5cm, AC=12cm, BC=13cm. Kẻ đường cao AH. Tính HB, HC
1/Cho tam giác ABC vuông tại A, đường cao AH=30cm, \(\dfrac{AB}{AC}\)=\(\dfrac{5}{6}\). Tính HB,HC
2/Cho tam giác ABC có AB=5cm, AC=12cm, BC=13cm. Kẻ đường cao AH. Tính HB, HC
1/cho tam giác abc vuông tại a đường cao AH=2cm,AB=1/2AC. tính AB,AC,HB,HC
2/cho tam giác abc vuông tại a đường cao AH=12cm.tính cạnh huyền BC,biết \(\dfrac{HB}{HC}\)=\(\dfrac{1}{3}\)
1.Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=8cm, HC - HB=8cm
a)Tính HB,HC,AC
b)Vẽ phân giác AD, tính DB, DC, DA.
2. Cho tam giác ABC cân tại A , có AB=AC=10cm, BC= \(4\sqrt{5}\)cm. vẽ đường cao BH.
a) Tính AH
b)Gọi K là hình chiếu của H trên AB. Tính KA, KB, HK
Cho ∆ABC vuông tại A. Biết \(\dfrac{AB}{AC}=\dfrac{5}{7}\) . Đường cao AH = 15cm. Tính HB, HC.
cho tam giác ABC vuông tại A(AB<AC), đường cao AH. Gọi E và F là hình chiếu của H trên trên AB và AC; O là trung điểm của BC và AO cắt EF tại I.
a) CMR: \(\dfrac{AH^2}{BE.CF}=\dfrac{AB}{AC}+\dfrac{AC}{AB}\)
b) Tính \(\dfrac{AI}{HB}+\dfrac{AI}{HC}\)
Cho tam giác ABC vuông tại A. Biết \(\dfrac{AB}{AC}=\dfrac{5}{6}\), đường cao AH = 30cm. Tính HB, HC
Cho tam giác ABC vuông tại A và đường cao AH. Gọi E,F là hình chiếu của H lên AB,AC. Chừng minh rằng:
a. BC2=3AH2+BE2+CF2
b. AE.AB=AF.AC
c. \(\dfrac{AB^2}{AC^2}\)=\(\dfrac{HB}{HC}\)
d. \(\dfrac{AB^3}{AC^3}\)=\(\dfrac{BE}{CF}\)
e. AB3=BE.BC2
Giúp mình câu e với!!
MỌI NGƯỜI ƠI AI BIẾT LÀM BÀI NÀY GIÚP MÌNH VỚI
bài 1)cho tam giác vuông ABC,góc A=90,AH là đường cao, vẽ HK vuông góc với AB (K thuộc AB)CM
a)AB.AK=HB.HC
b)HB^2/AC^2 = HB/HC