\(=\dfrac{3a^2}{2a-b}\cdot\dfrac{\left|2a-b\right|}{\sqrt{3a^2b}}=\pm\sqrt{\dfrac{3a^2}{b}}\)
\(=\dfrac{3a^2}{2a-b}\cdot\dfrac{\left|2a-b\right|}{\sqrt{3a^2b}}=\pm\sqrt{\dfrac{3a^2}{b}}\)
a \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
b \(\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}\) với a>0
c \(\sqrt{5a.45a}-3a\) với a<0
Cho a, b,c : abc = 1. Chứng minh:
\(\dfrac{a^2b^2}{2a^2+b^2+3a^2b^2}+\dfrac{b^2c^2}{2b^2+c^2+3b^2c^2}+\dfrac{c^2a^2}{2c^2+a^2+3a^2c^2}\le\dfrac{1}{2}\)
a : \(\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}\) với a ≥ 0
b : \(\sqrt{3a}.\sqrt{\dfrac{52}{a}}\)với a ≥ 0
c : \(2y^2.\sqrt{\dfrac{x^4}{4y^2}}\)với y ≤ 0
a, a,b,c>0. CMR:\(\dfrac{ab}{a+b+2c}+\dfrac{bc}{b+c+2a}+\dfrac{ac}{a+c+2b}\le\dfrac{a+b+c}{4}\)
b, a,b,c>0. CMR:\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{a+b+c}{6}\)
với a > 0, b > 0 thì \(\sqrt{\dfrac{a}{b}}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}\)bằng:
a) 2
b) \(\dfrac{2\sqrt{ab}}{b}\)
c) \(\sqrt{\dfrac{a}{b}}\)
d) \(\sqrt{\dfrac{2a}{b}}\)
Cho a, b, c > 0 . CMR :
\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ca}{c+3a+2b}\le\dfrac{a+b+c}{6}\)
a)A=\(\dfrac{1}{2a-1}\sqrt{5a^2\left(1-4a+4a^2\right)}\) với a>\(\dfrac{1}{2}\)
b)A=\(\dfrac{\sqrt{x-2\sqrt{x-1}}}{\sqrt{x-1}-1}\)+\(\dfrac{\sqrt{x+2\sqrt{x-1}}}{\sqrt{x-1+1}}\) với x>2
c)\(\dfrac{a+b}{b^2}\)\(\sqrt{\dfrac{a^2b^4}{a^2+2ab+b^2}}\) với a+b>0; b≠0
d)A=\(\left(\sqrt{\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\) với a≥0; a≠1
e)A=\(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)}{\left(x-1\right)^4}}\) với x≠1; y≠1; y>o
f)A=\(\sqrt{\dfrac{m}{1-2x+x^2}}\)\(\sqrt{\dfrac{4m-8mx+4mx^2}{81}}\) với m>0; x≠4
g)A=\(\left(\dfrac{\sqrt{x}+1}{x-4}-\dfrac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right)\)\(\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}}\) với x>0; x≠4
h)\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\)\(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\) với a≥0; a≠1
M = \(\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\)
a) Rút gọn M
b) Tìm những GT nguyên của A để M có GT nguyên
!!Help
Cho các số thực dương a,b thỏa mãn: (a+1)(b+1)=4ab. Tìm GTLN của
P=\(\dfrac{1}{\sqrt{3a^2+1}}+\dfrac{1}{\sqrt{3b^2+1}}\)
Cho a, b, c > 0 thỏa mãn : \(ab+bc+ca=3abc\)
Tìm GTLN : F = \(\dfrac{1}{a+2b+3c}+\dfrac{1}{2a+3b+c}+\dfrac{1}{3a+b+2c}\)