Chọn C.
Phương pháp: Dựa vào dữ kiện bài toán để xác định tọa độ điểm M.
Cách giải: Ta có:
Chọn C.
Phương pháp: Dựa vào dữ kiện bài toán để xác định tọa độ điểm M.
Cách giải: Ta có:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x + y + z - 1 = 0 và hai điểm A ( 1;-3;0 ), B ( 5;-1;-2 ). Điểm m ( a;b;c ) trên mặt phẳng (P) sao cho M A - M B đạt giá trị lớn nhất. Tính tổng a + b + c
A. 1
B. 11
C. 5
D. 6
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;1;2), M(3;0;0) và mặt phẳng (P):x+y+z-3=0. Đường thẳng ∆ đi qua điểm M, nằm trong mặt phẳng (P) sao cho khoảng cách từ điểm A đến đường thẳng ∆ là nhỏ nhất. Gọi u → = a , b , c là vectơ chỉ phương của ∆ với a, b, c là các số nguyên có ước chung lớn nhất bằng 1. Tính giá trị T=a+b+c.
A. T = -1
B. T = 1.
C. T = 0.
D. T = 2.
Trong không gian với hệ tọa độ cho mặt phẳng ( P ) : x + y + z - 1 = 0 và hai điểm A 1 ; - 3 ; 0 , B 5 ; - 1 ; - 2 . Điểm M a ; b ; c trên mặt phẳng (P) sao cho M A - M B đạt giá trị lớn nhất. Tính tổng S = a + b
A. 1
B. 11
C. 5
D. 6
Trong không gian với hệ tọa độ Oxyz cho đường thẳng d : x − 1 − 1 = y + 3 2 = z − 3 1 và mặt phẳng P : 2 x + y − 2 z + 9 = 0 . Tọa độ điểm I thuộc d sao cho khoảng cách từ I đến mặt phẳng (P) bằng 2 có dạng I(a;b;c). Giá trị của a + b + c bằng
A. -3 hoặc 9
B. 1 hoặc 2
C. 3 hoặc -9
D. -1 hoặc 2
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;-2;0), B(-3;2;-4) và mặt phẳng P : x + 2 y + z − 3 = 0 . Gọi M(a,b,c) là điểm thuộc mặt phẳng (P) sao cho tam giác MAB cân tại M và có diện tích nhỏ nhất. Tính giá trị T = a 2 + b + c .
A. T = 1.
B. T = 2.
C. T = 0.
D. T = 3.
Trong không gian với hệ tọa độ Oxyz, biết M(a,b,c) (với a > 0) là điểm thuộc đường thẳng Δ : x 1 = y + 2 − 1 = z − 1 2 và cách mặt phẳng P : 2 x − y + 2 z − 5 = 0 một khoảng bằng 2. Tính giá trị của T=a+b+c
A. T = -1
B. T = -3
C. T = 3.
D. T = 1.
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(0;1;2), B(2;-2;1), C(-2;0;1) và mặt phẳng ( P ) : 2 x + 2 y + z - 3 = 0 . Tọa độ điểm M thuộc mặt phẳng (P) sao cho M cách đều ba điểm A, B, C là
A. M(-7;3;2)
B. M(2;3;-7)
C. M(3;2;-7)
D. M(3;-7;2)
Trong không gian với hệ tọa độ Oxyz, cho điểm M(a;b;c), (a > 0) thuộc đường thẳng d : x − 3 = y + 2 − 1 = z − 1 2 . Hình chiếu song song của điểm M trên mặt phẳng P : x + 5 y − 2 = 0 theo phương của đường thẳng Δ: x = 3 − t y = 1 + 2 t z = − 3 t là điểm M’ sao cho MM ' = 14 . Tính giá trị của biểu thức T = a + b + c là:
A. 0
B. 1
C. 2
D. 3
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;2), B(3;1;-1) và mặt phẳng (P): x+y+z-1=0. Gọi M ( a ; b ; c ) ∈ P sao cho 3 M A ⇀ - 2 M B ⇀ đạt giá trị nhỏ nhất. Tính S=9a+3b+6c.
A. 4
B. 3
C. 2
D. 1