Trong không gian với hệ tọa độ Oxyz, cho điểm M(a;b;c), (a > 0) thuộc đường thẳng d : x − 3 = y + 2 − 1 = z − 1 2 . Hình chiếu song song của điểm M trên mặt phẳng P : x + 5 y − 2 = 0 theo phương của đường thẳng Δ: x = 3 − t y = 1 + 2 t z = − 3 t là điểm M’ sao cho MM ' = 14 . Tính giá trị của biểu thức T = a + b + c là:
A. 0
B. 1
C. 2
D. 3
Trong không gian với hệ tọa độ Oxyz cho đường thẳng d : x − 1 − 1 = y + 3 2 = z − 3 1 và mặt phẳng P : 2 x + y − 2 z + 9 = 0 . Tọa độ điểm I thuộc d sao cho khoảng cách từ I đến mặt phẳng (P) bằng 2 có dạng I(a;b;c). Giá trị của a + b + c bằng
A. -3 hoặc 9
B. 1 hoặc 2
C. 3 hoặc -9
D. -1 hoặc 2
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;1;2), M(3;0;0) và mặt phẳng (P):x+y+z-3=0. Đường thẳng ∆ đi qua điểm M, nằm trong mặt phẳng (P) sao cho khoảng cách từ điểm A đến đường thẳng ∆ là nhỏ nhất. Gọi u → = a , b , c là vectơ chỉ phương của ∆ với a, b, c là các số nguyên có ước chung lớn nhất bằng 1. Tính giá trị T=a+b+c.
A. T = -1
B. T = 1.
C. T = 0.
D. T = 2.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A - 2 ; 1 ; 0 , B 4 ; 4 ; - 3 , C 2 ; 3 ; - 2 và đường thẳng d : x - 1 1 = y - 1 - 2 = z - 1 - 1 . Gọi α là mặt phẳng chứa d sao cho A, B, C ở cùng phía đối với mặt phẳng α . Gọi d 1 , d 2 , d 3 lần lượt là khoảng cách từ A, B, C đến α . Tìm giá trị lớn nhất của T = d 1 + 2 d 2 + 3 d 3 .
A. T m a x = 2 21
B. T m a x = 6 14
C. T m a x = 14 + 203 3 + 3 21
D. T m a x = 203
Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng P : x + y − 4 z = 0 , đường thẳng d : x − 1 2 = y + 1 − 1 = z − 3 1 và điểm A 1 ; 3 ; 1 thuộc mặt phẳng P . Gọi Δ là đường thẳng đi qua A, nằm trong mặt phẳng (P) và cách d một khoảng cách lớn nhất. Gọi u → = a ; b ; 1 là một VTCP của đường thẳng Δ . Tính a + 2 b .
A. a + 2 b = − 3.
B. a + 2 b = 0.
C. a + 2 b = 4.
D. a + 2 b = 7.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 3 2 = y + 2 1 = z + 1 - 1 và mặt phẳng (P): x + y + z + 2 = 0. Đường thẳng ∆ nằm trong mặt phẳng (P), vuông góc với đường thẳng d đồng thời khoảng cách từ giao điểm I của d với (P) đến ∆ bằng 42 . Gọi M(5;b;c) là hình chiếu vuông góc của I trên ∆. Giá trị của bc bằng
A. - 10
B. 10
C. 12
D. - 20
Trong không gian với hệ toạ độ Oxyz, cho điểm A(-3;-1;3) và đường thẳng d: x - 1 3 = y - 1 2 = z - 5 2 , mặt phẳng (P):x+2y-z+5=0. Đường thẳng Δ qua A và cắt d tại điểm B(a;b;c) và tạo với mặt phẳng (P) góc 30 ° . Tính T=a+b+c.
A. T = 14
B. T = 0
C. T = 21
D. T = 7
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng P : x + y - 4 z = 0 đường thẳng d: x - 1 2 = y + 1 - 1 = z - 3 1 và điểm A 1 ; 3 ; 1 thuộc mặt phẳng (P). Gọi ∆ là đường thẳng đi qua A nằm trong mặt phẳng (P) và cách d một khoảng cách lớn nhất. Gọi u → = 1 ; b ; c là một vectơ chỉ phương của đường thẳng ∆ . Tính b + c
A. b + c = - 6 11
B. b + c = 0
C. b + c = 1 4
D. b + c = 4.
Trong không gian Oxyz, cho đường thẳng d: x - 3 2 = y + 2 1 = z + 1 - 1 và mặt phẳng có phương trình (P): x+y+z+2=0. Đường thẳng Δ nằm trong mặt phẳng (P), vuông góc với đường thẳng d đồng thời khoảng cách từ giao điểm I của d với (P) đến Δ bằng 42 . Gọi M(5;b;c) là hình chiếu vuông góc của I trên Δ . Giá trị của bc bằng:
A. -10.
B. 10
C. 12
D. -20