a: \(A=sinx\cdot cosx\cdot\left(sin^4x-cos^4x\right)\)
\(=\dfrac{1}{2}\cdot sin2x\cdot\left(sin^2x-cos^2x\right)\)
\(=\dfrac{1}{2}\cdot sin2x\cdot\left(-cos2x\right)\)
\(=-\dfrac{1}{2}\cdot sin2x\cdot cos2x\)
\(=\dfrac{-1}{4}\cdot sin4x=-\dfrac{1}{4}\cdot sin\left(4\cdot\dfrac{pi}{16}\right)=-\dfrac{\sqrt{2}}{8}\)
b: \(B=\left(sin^4x+cos^4x\right)+sinx\cdot cosx\left(sin^2x-cos^2x\right)\)
\(=\left(sin^2x-cos^2x\right)^2+2\cdot\left(sinx\cdot cosx\right)^2+sinx\cdot cosx\left(sin^2x-cos^2x\right)\)
\(=\left(-cos2x\right)^2+2\cdot\left(\dfrac{1}{2}\cdot sin2x\right)^2+\dfrac{1}{2}\cdot sin2x\cdot\left(-cos2x\right)\)
\(=cos^22x+\dfrac{1}{2}\cdot sin^22x-\dfrac{1}{4}\cdot sin4x\)
\(=cos^2\left(2\cdot\dfrac{pi}{48}\right)+\dfrac{1}{2}\cdot sin^2\left(2\cdot\dfrac{pi}{48}\right)-\dfrac{1}{4}\cdot sin\left(4\cdot\dfrac{pi}{48}\right)\)
\(\simeq0.93\)