a: pi<x<3/2pi
=>sinx<0 và cosx<0
\(1+tan^2x=\dfrac{1}{cos^2x}\)
=>\(\dfrac{1}{cos^2x}=1+\dfrac{9}{4}=\dfrac{13}{4}\)
=>\(cos^2x=\dfrac{4}{13}\)
=>\(\left\{{}\begin{matrix}cosx=-\dfrac{2}{\sqrt{13}}\\sin^2x=\dfrac{9}{13}\end{matrix}\right.\)
mà sin x<0
nên \(sinx=-\dfrac{3}{\sqrt{13}}\)
\(cotx=1:\dfrac{3}{2}=\dfrac{2}{3}\)
b: 0<x<90 độ
=>sin x>0 và cosx>0
\(1+tan^2x=\dfrac{1}{cos^2x}\)
=>\(\dfrac{1}{cos^2x}=1+\dfrac{1}{3}=\dfrac{4}{3}\)
=>\(cos^2x=\dfrac{3}{4}\)
=>\(cosx=\dfrac{\sqrt{3}}{2}\)
=>\(sinx=\dfrac{1}{2}\)
cotx=1:căn 3/3=3/căn 3=căn 3
c: 3/2pi<x<2pi
=>sinx<0 và cosx>0
\(1+cot^2x=\dfrac{1}{sin^2x}\)
=>\(\dfrac{1}{sin^2x}=1+\dfrac{1}{3}=\dfrac{4}{3}\)
=>\(sin^2x=\dfrac{3}{4}\)
mà sin x<0
nên \(sinx=-\dfrac{\sqrt{3}}{2}\)
\(cos^2x=1-\dfrac{3}{4}=\dfrac{1}{4}\)
mà cosx>0
nên cosx=1/2