\(a,\left(x-8\right)\left(x^3+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
\(b,\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\\ \Leftrightarrow4x-3-x-5=30-3x\\ \Leftrightarrow3x-8-30+3x=0\\ \Leftrightarrow6x-38=0\\ \Leftrightarrow x=\dfrac{19}{3}\)
TK
`a.(x-8)(x+8)=0`
`⇔³{x−8=0x³+8=2 `
`⇔³³{x=8x³=−2³ `
`⇔{x=8x=−2`
Vậy ` x = 8;-2`
`b. ( 4 x − 3 ) − ( x + 5 ) = 3 . ( 10 − x )`
`⇔ 4 x − 3 − x − 5 = 30 − 3 x`
`⇔ 3 x − 8 = 30 − 3 x`
`⇔ 3 x + 3 x = 30 + 8`
`⇔ 6 x = 38`
`⇔ x = 19/ 3`
Vậy ` x = 19/ 3`
\(a.\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\\left(x+2\right)\left(x^2-2x+4\right)=0\end{matrix}\right.\)
Ta có: \(x^2-2x+4=x^2-2x+1+3=\left(x-1\right)^2+3\ge3>0\)
\(\Rightarrow x=-2\)
Vậy \(S=\left\{-2;8\right\}\)
b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow6x=38\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
Vậy \(S=\left\{\dfrac{19}{3}\right\}\)