`(a sqrt{b} + b sqrt{a})/(sqrt{a} + sqrt{b}) - sqrt{ab} (`ĐK: `a;b >0)`
`= ((sqrt{a} sqrt{b})(sqrt{a} + sqrt{b}))/(sqrt{a} + sqrt{b}) - sqrt{ab}`
`= sqrt{a} sqrt{b} - sqrt{ab}`
`= sqrt{ab} - sqrt{ab}`
`= 0`
`(a sqrt{b} + b sqrt{a})/(sqrt{a} + sqrt{b}) - sqrt{ab} (`ĐK: `a;b >0)`
`= ((sqrt{a} sqrt{b})(sqrt{a} + sqrt{b}))/(sqrt{a} + sqrt{b}) - sqrt{ab}`
`= sqrt{a} sqrt{b} - sqrt{ab}`
`= sqrt{ab} - sqrt{ab}`
`= 0`
Cho biểu thức A = \(\left(\dfrac{\sqrt{ab}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{b}-\sqrt{a}}+1\right):\left(\dfrac{\sqrt{ab}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{a}-\sqrt{b}}-1\right)\)
Cho \(\sqrt{ab}+1=4.\sqrt{b}\), tìm max của biểu thức A.
Cho biểu thức I = \(\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}}\right)\).\(\left[\left(\dfrac{1}{\sqrt{a}-\sqrt{b}}+\dfrac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}}\right):\dfrac{a-b}{a+\sqrt{ab}+b}\right]\)
Rút gọn I
a) Tính giá trị của I với a = 16, b = 4
Rút gọn biểu thức
a) \(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\left(\sqrt{a+\sqrt{b}}\right)^2-4\sqrt{ab}}.\dfrac{a-b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\) \(\left(đkxđ:a\ne b;a\ge0;b\ge0\right)\)
b) \(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\dfrac{a-b}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)\(\left(đkxđ:a\ne b;a\ge0;b\ge0\right)\)
HELP ME PLSSSSSSSSSS
M = \(\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\)
a) Rút gọn M
b) Tìm những GT nguyên của A để M có GT nguyên
!!Help ![]()
rút gọn P=\(\left(\dfrac{\sqrt{a}-b}{\sqrt{a}+b}-\dfrac{\sqrt{a}+b}{\sqrt{a}-b}\right).\left(\sqrt{a^3}-\dfrac{ab^2}{\sqrt{a}}\right)\)
\(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}:\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
Rút gọn \(A=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{1}{a-b}\left(\dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\)
cho M= \(\dfrac{\sqrt{a}+\sqrt{b}-1}{a+a\sqrt{b}}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\dfrac{\sqrt{b}}{a\sqrt{ab}}+\dfrac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
a) tìm điều kiện a và b để M xác định
b) c/m M>0
CMR: A không phụ thuộc vào giá trị a, b
\(A=\dfrac{2}{\sqrt{ab}}:\left(\dfrac{1}{\sqrt{a}}-\dfrac{1}{\sqrt{b}}\right)^2-\dfrac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\left(a,b>0;a\ne b\right)\)
1. chứng minh rằng các hằng đẳng thức sau với điều kiện các biểu thức tồn tại:
a) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=a-b\)
b)\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\)