ĐKXĐ : \(-2\le x\le6\)
Xét vế trái : \(VT^2=\left(\sqrt{6-x}+\sqrt{x+2}\right)^2\le2.\left(6-x+x+2\right)=16\)
\(\Rightarrow VT\le4\)
Xét vế phải : \(VP=\left(x^2-6x+9\right)+4=\left(x-3\right)^2+4\ge4\)
Vậy để đẳng thức xảy ra khi VT = VP = 4 => x = 3 (TM)
ĐKXĐ: \(x\le6;x\ge-2\)
Đặt VT=A
=>A\(=\sqrt{6-x}+\sqrt{x+2}\Leftrightarrow A^2=\left[\left(\sqrt{6-x}\right)+\left(\sqrt{x+2}\right)\right]^2\)
\(\Leftrightarrow A^2=6-x+x+2+2\sqrt{\left(6-x\right)\left(x+2\right)}\le8+\left(6-x\right)+\left(x+2\right)\)(AD BĐT cô si)
\(\Leftrightarrow A^2\le16\Rightarrow A\le4\)
Đặt VP=B
\(B=x^2-6x+13=x^2-2.3.x+9+4\)
\(\Leftrightarrow B=\left(x-3\right)^2+4\ge4\)
Mà A=Bsuy ra A=B=4
A=4 nên 6-x=x+2\(\Leftrightarrow x=2\)