Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
gfdzdfa

Giải hệ phương trình sau: \(\left\{{}\begin{matrix}3x-7y=0\\\dfrac{20}{x+y}+\dfrac{20}{x-y}=7\end{matrix}\right.\)

ILoveMath
3 tháng 1 2022 lúc 21:47

\(\left\{{}\begin{matrix}3x-7y=0\\\dfrac{20}{x+y}+\dfrac{20}{x-y}=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=7y\\20\left(\dfrac{1}{x+y}+\dfrac{1}{x-y}\right)=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{1}{x+y}+\dfrac{1}{x-y}=\dfrac{7}{20}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{1}{\dfrac{7y}{3}+y}+\dfrac{1}{\dfrac{7y}{3}-y}=\dfrac{7}{20}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{1}{\dfrac{10y}{3}}+\dfrac{1}{\dfrac{4y}{3}}=\dfrac{7}{20}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{3}{10y}+\dfrac{3}{4y}=\dfrac{7}{20}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{3}{2}\left(\dfrac{1}{5y}+\dfrac{1}{2y}\right)=\dfrac{7}{20}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{2}{10y}+\dfrac{5}{10y}=\dfrac{7}{30}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\\dfrac{7}{10y}=\dfrac{7}{30}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7y}{3}\\10y=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7.3}{3}\\y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=3\end{matrix}\right.\)

 

 

Phía sau một cô gái
3 tháng 1 2022 lúc 21:49

ĐKXĐ:    \(x\ne\pm y\)

Với điều kiện \(x\ne\pm y\) hệ phương trình đã cho 

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)=5\left(x-y\right)\\\dfrac{20}{x+y}+\dfrac{20}{x-y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x+y}=\dfrac{2}{x-y}\\\dfrac{20}{x+y}+\dfrac{20}{x-y}=7\end{matrix}\right.\)

Đặt \(\dfrac{1}{x+y}=a;\dfrac{1}{x-y}=b\)

ta có hệ phương trình:   \(\left\{{}\begin{matrix}5a=2b\\20a+20b=7\end{matrix}\right.\)

Giải hệ phương trình được \(a=\dfrac{1}{10};b=\dfrac{1}{4}\)

Thay vào hệ ta giải tìm \(x=7;y=3\)


Các câu hỏi tương tự
Xem chi tiết
Tran Phut
Xem chi tiết
Nguyễn Văn Tài Tâm
Xem chi tiết
MiMi VN
Xem chi tiết
Phạm Quang Minh
Xem chi tiết
Tuyết Ly
Xem chi tiết
Phùng Minh Phúc
Xem chi tiết
Tuyết Ly
Xem chi tiết
pansak9
Xem chi tiết