Đặt \(t=\sqrt{x},t\ge0\)
\(C=\sqrt{t^2-4t+4}+\sqrt{t^2-6t+9}=\sqrt{\left(t-2\right)^2}+\sqrt{\left(t-3\right)^2}=\left|t-2\right|+\left|t-3\right|\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) , dấu "=" xảy ra khi a,b cùng dấu được :
\(\left|t-2\right|+\left|3-t\right|\ge\left|t-2+3-t\right|=1\)
Dấu "=" xảy ra khi \(2\le t\le3\)
Suy ra \(4\le x\le9\)
Vậy Min C = 1 khi \(4\le x\le9\)