\(S=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-....+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\)
\(<\frac{1}{2^4}-\frac{1}{2^4}+\frac{1}{2^8}-\frac{1}{2^8}+...+\frac{1}{2^{4n}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2004}}-\frac{1}{2^{2004}}\)=0+0+0+...+0+....+0=0 <0,2
Vậy S<0,2
\(S=\left(\frac{1}{2^2}+...+\frac{1}{2^{2002}}\right)-\frac{1}{2^2}\left(\frac{1}{2^2}+...+\frac{1}{2^{2002}}\right)=\frac{3}{4}\left(\frac{1}{2^2}+...+\frac{1}{2^{2002}}\right)\)
\(S<0,2\Leftrightarrow\frac{3}{4}\left(\frac{1}{2^2}+...+\frac{1}{2^{2002}}\right)<0,2\Leftrightarrow\frac{1}{2^2}+...+\frac{1}{2^{2002}}<\frac{4}{15}\)
Ta có : \(2P-P=\frac{1}{2}+...+\frac{1}{2^{2001}}-\frac{1}{2^2}-...-\frac{1}{2^{2002}}=\frac{1}{2}-\frac{1}{2^{2002}}\) với \(P=\frac{1}{2^2}+...+\frac{1}{2^{2002}}\)
Thế mà P< 4/15 chịu