CMR:
\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}
CMR:a,\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)<1/3
\(b.\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}
Cmr: \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}
CMR :
\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}......\frac{9999}{10000}< \frac{1}{100}\)
\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}....\frac{9999}{10000}< \frac{1}{100}\)
CMr
CMR :
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
\(B=\frac{4+\frac{4}{5}+\frac{4}{155}-\frac{4}{1555}+\frac{4}{235}}{8+\frac{8}{5}+\frac{16}{310}+\frac{8}{235}-\frac{8}{1555}}.\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{4+\frac{3}{2}+\frac{3}{4}}\)
Tính A
\(A=2\frac{2}{35}^3-\frac{2^3}{63}-\frac{2}{99}^3-\frac{2}{143}^3-\frac{2}{195}^3-\frac{2}{255}^3-\frac{2}{323}^3\)
giải cả bài nha
\(A=2-\frac{2^3}{35}-\frac{2}{63}^3-\frac{2}{99}^3-\frac{2}{142}^3-\frac{2}{195}^3-\frac{2}{255}^3-\frac{2}{323}^3\)
Tìm A
giải cả bài nha