Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Minh Hưng

CMR:

\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}

Say You Do
18 tháng 3 2016 lúc 22:19

Đặt A=\(\frac{1}{3}\) - \(\frac{2}{3^2}\) +\(\frac{3}{3^3}\) - \(\frac{4}{3^4}\)+...+ \(\frac{99}{3^{99}}\) - \(\frac{100}{3^{100}}\)

=> 3A=1-\(\frac{2}{3}\) + \(\frac{3}{3^2}\) - \(\frac{4}{3^3}\)+...+\(\frac{99}{3^{98}}\) - \(\frac{100}{3^{99}}\)

=> 4A=1-\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{3^{98}}\) - \(\frac{1}{3^{99}}\)\(\frac{100}{3^{100}}\)

=> 4A<1-\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{3^{98}}\) - \(\frac{1}{3^{99}}\) (1)

Đặt B=1-\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{3^{98}}\) - \(\frac{1}{3^{99}}\)

=> B=2+ \(\frac{1}{3}\) - \(\frac{1}{3^2}\) +...+\(\frac{1}{3^{97}}\) - \(\frac{1}{3^{98}}\)

=> 4B=B+3B=3-\(\frac{1}{3^{99}}\)<3 => A<\(\frac{3}{4}\) (2)

Từ (1) và (2) ta có: 4A<B<\(\frac{3}{4}\) => A<\(\frac{3}{16}\) => đpcm.

 

Say You Do
18 tháng 3 2016 lúc 21:58

Bạn ơi, mình cx đang nghĩ câu này.

Say You Do
18 tháng 3 2016 lúc 22:04

ok mình nghĩ ra rồi.


Các câu hỏi tương tự
Mai Thị Phương Anh
Xem chi tiết
Lan Trần
Xem chi tiết
Ngân Hoàng Xuân
Xem chi tiết
Tam giác
Xem chi tiết
Tam giác
Xem chi tiết
Tam giác
Xem chi tiết
Tsubasa Sakura
Xem chi tiết
Tsubasa Sakura
Xem chi tiết
Tsubasa Sakura
Xem chi tiết