Có \(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}>n\frac{1}{n+n}=\frac{1}{2}\left(đpcm\right)\)
Có \(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}>n\frac{1}{n+n}=\frac{1}{2}\left(đpcm\right)\)
Cho 2 phân số\(\frac{1}{n}và\frac{1}{n+1}\)
( n\(\in\) Z và n>0)
CMR \(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n}-\frac{1}{n+1}\)
CMR: \(\frac{1}{n}+\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)
Chứng minh rằng: \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}
CMR:\(S=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+..+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}
CMR: \(\frac{1}{6}<\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}<\frac{1}{4}\)
Tìm n nguyên để P=\(\frac{2n+1}{n-2}\) có gt nguyên
mk nghĩ đc bước kế tiếp là \(\frac{2n-4+5}{n-2}\)
CMR:
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}
CMR :
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
CMR : 1+2+3+...+n = \(\frac{n\left(n+1\right)}{2}\)