Ta có:
\(\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)\Rightarrow x^3+y^3+3xy=1\)
\(P=\dfrac{x^3+y^3+3xy}{x^3+y^3}+\dfrac{x^3+y^3+3xy}{xy}=4+\dfrac{3xy}{x^3+y^3}+\dfrac{x^3+y^3}{xy}\ge4+2\sqrt{3}\)
Ta có:
\(\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)\Rightarrow x^3+y^3+3xy=1\)
\(P=\dfrac{x^3+y^3+3xy}{x^3+y^3}+\dfrac{x^3+y^3+3xy}{xy}=4+\dfrac{3xy}{x^3+y^3}+\dfrac{x^3+y^3}{xy}\ge4+2\sqrt{3}\)
cho x,y,z >0 thỏa \(x^2+y^2+z^2=3\) CMR
\(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge xy+yz+xz\)
1) CMR : \(2^{1975}+5^{2010}⋮3\)
2) CMR nếu \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=1\) thì \(x\sqrt{1+y^2}+y\sqrt{1+x^2}=0\)
3) cho a,b,c dương . CM \(\sqrt{\dfrac{2}{a}}+\sqrt{\dfrac{2}{b}}+\sqrt{\dfrac{2}{c}}\le\sqrt{\dfrac{a+b}{ab}}+\sqrt{\dfrac{b+c}{bc}}+\sqrt{\dfrac{c+a}{ca}}\)
p/s : đề GIa lai nhé mik hỏi cách làm khác thui, sắp thi tỉnh oy =)
1)cho a,b,c>0 CMR \(\dfrac{a^2}{b^2c}+\dfrac{b^2}{c^2a}+\dfrac{c^2}{a^2b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
2)tìm x,y nguyên dương thỏa \(\left(x^2+1\right)\left(y^2+1\right)+2\left(x-y\right)\left(1-xy\right)=4xy+9\)
3) ghpt a) \(\left\{{}\begin{matrix}x^2+y^2+3=4x\\x^3+12x+y^3=6x^2+9\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}x^4+3=4y\\y^4+3=4x\end{matrix}\right.\)
Cho x , y , z > 0
Chứng minh rằng \(\dfrac{2\sqrt{x}}{x^3+y^2}+\dfrac{2\sqrt{y}}{y^3+z^2}+\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
Ai đó giúp tui nhanh nha , thanks you
1) ghpt a)\(\left\{{}\begin{matrix}2x+\dfrac{y}{\sqrt{4x^2+1}+2x}+y^2=0\\4\left(\dfrac{x}{y}\right)^2+2\sqrt{4x^2+1}+y^2=3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(x^2-1\right)y+\left(y^2-1\right)=2\left(xy-1\right)\\4x^2+y^2+2x-y-6=0\end{matrix}\right.\)
2) tìm các số nguyên x,y thỏa mãn \(x^2+y^2-xy=x+y+2\)
3) gpt \(\sqrt{2x^2-x}=2x-x^2\)
1) cho x,y,z là các số thực thỏa mãn \(\left\{{}\begin{matrix}xyz=2\\2+x+xy\ne0\end{matrix}\right.\)
tính B= \(\dfrac{1}{1+y+yz}+\dfrac{2}{2+2z+xz}+\dfrac{2}{2+x+xy}\)
2) giải hpt \(\left\{{}\begin{matrix}\left(y^2-4y\right)\left(2y-x\right)=2\\y^2-2y-x=3\end{matrix}\right.\)
3)GPT \(x^2-2x=2\sqrt{2x-1}\)
4) tìm n nguyên dương để A=\(2^9+2^{13}+2^n\) là số chính phương
5) tìm Min của A=\(\dfrac{\left(x+y+1\right)^2}{xy+y+x}+\dfrac{xy+y+x}{\left(x+y+1\right)^2}\) (x;y dương )
1) cho a,b,c dương thỏa a+b+c=1 CMR \(\sqrt{\left(ab+c\right)\left(bc+a\right)\left(ac+b\right)}=\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
2) cho x,y dương thỏa mãn \(x\sqrt{x}+y\sqrt{y}=x^2+y^2=x^2\sqrt{x}+y^2\sqrt{y}\) .tính tổng x+y
3) ghpt \(\left\{{}\begin{matrix}x^2+2y^2=2\\3x^2+4xy+4x+3y=y^2-4\end{matrix}\right.\)
4) gpt \(\sqrt{x^2+3}+\dfrac{4x}{\sqrt{x^2+3}}=5\sqrt{x}\)
a/ giải pt: \(\sqrt{3x-2}-\sqrt{x+7}=1\)
b/ giải hpt: \(\left\{{}\begin{matrix}\dfrac{1}{x-1}+\dfrac{1}{y-2}=2\\\dfrac{2}{y-2}-\dfrac{3}{x-1}=1\end{matrix}\right.\)
Giải phương trình a2xy+ay-x=0 (x, y là tham số) biết\(\sqrt{x^3+y^9+1}=\sqrt{x^3}+\sqrt[]{y^9}+1\).