b: \(BD\subset\left(ABD\right)\)
=>BD nằm trong mp(ABD)
c: \(D\in CD\)
\(D\in\left(ABD\right)\)
Do đó: \(D=CD\cap\left(ABD\right)\)
=>CD cắt (ABD)
d: Xét ΔCBD có H,K lần lượt là trung điểm của CB,CD
=>HK là đường trung bình
=>HK//BD
=>HK//(ABD)
b: \(BD\subset\left(ABD\right)\)
=>BD nằm trong mp(ABD)
c: \(D\in CD\)
\(D\in\left(ABD\right)\)
Do đó: \(D=CD\cap\left(ABD\right)\)
=>CD cắt (ABD)
d: Xét ΔCBD có H,K lần lượt là trung điểm của CB,CD
=>HK là đường trung bình
=>HK//BD
=>HK//(ABD)
cho tứ diện ABCD gọi H,K lần lượt là trung điểm AB,BC. Xét vị trí tương đối của các cặp đường thẳng sau đây
a) HK và BC
b) HK và AC
c) BK và CD
e) HK và CD
cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm DC, BC. Xác định vị trí tương đối của cặc cặp đường thẳng với mặt phẳng sau
a) MN và (ABD)
b) AM và (BCD)
c) AN và (ABC)
cho tứ diện SABC. Gọi H,K lần lượt là trung điểm SB, SC. Xác định vị trí tương đối của cặc cặp đường thẳng với mặt phẳng sau
a) HK và (ABC)
b) AK và (SBC)
c) AH và (SAB)
Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm các cạnh AB và AC. Xét vị trí tương đối của đường thẳng MN và mp(BCD) là:
A. MN nằm trong (BCD)
B. MN không song song (BCD)
C. MN//(BCD)
D. MN cắt (BCD)
cho tứ diện ABCD gọi M,N lần lượt là trung điểm CD,BC. Xét vị trí tương đối của các cặp đường thẳng sau đây
a) MN và BD
b) CM và AD
c) BN và DM
e) MN và AB
cho hình chóp S.ABCD, đáy ABCD là hình bình hành, tâm O. Gọi H,K lần lượt là trung điểm SB,SD. Xác định vị trí tương đối của các cặp đường thẳng và mặt phẳng sau
a) HK và (ABCD)
b) BK và (SAC)
c) SO và (SBD)
Cho tứ diện ABCD. Trên ba cạnh AB, AC, AD lần lượt lấy các điểm B', C', D' sao cho đường thẳng B'C'cắt đường thẳng BC tại K, đường thẳng C'D' cắt đường thẳng CD tại J, đường thẳng D'B' cắt đường thẳng DB tại I.
a) Chứng minh ba điểm I, J, K thẳng hàng.
b) Lấy điểm M ở giữa đoạn thẳng BD; điểm N ở giữa đoạn thẳng CD sao cho đường thẳng MN cắt đường thẳng BC và điểm F nằm bên trong tam giác ABC. Xác định thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MNF).
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AC và BC, P là điểm thuộc DB sao cho PB = 2PD. Gọi Q là giao điểm của CD với mặt phẳng (MNP). Đường thẳng MP không chéo với đường thẳng nào sau đây?
A. AB
B. CD
C. NP
D. BC
cho hình chóp S.ABCD, đáy ABCD là hình thang, có đáy lớn AB. Gọi M,N lần lượt là trung điểm SA,SC; E = AC giao BD. Xác định vị trí tương đối của các cặp đường thẳng và mặt phẳng sau
a) MN và (ABCD)
b) AN và (ABD)
c) SE và (SAC)