Các hệ thức về cạnh và đường cao là:
\(DE^2=EH\cdot EF\); \(DF^2=FH\cdot FE\)
\(DH^2=HE\cdot HF\)
\(DH\cdot FE=DE\cdot DF\)
\(\dfrac{1}{DH^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)
Các hệ thức về cạnh và đường cao là:
\(DE^2=EH\cdot EF\); \(DF^2=FH\cdot FE\)
\(DH^2=HE\cdot HF\)
\(DH\cdot FE=DE\cdot DF\)
\(\dfrac{1}{DH^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)
Cho tam giác DEF vuông tại D , đường cao DH. Cho biét DE = 7 cm ; EF = 25cm.a/ Tính độ dài các đoạn thẳng DF , DH , EH , HF. b/ Kẻ HM ⊥ DE và HN ⊥ DF . Tính diện tích tứ giác EMNF. (Làm tròn đến hai chữ số thập phân)
Cho tam giác DEF vuông tại D, có DH là đường cao,EH=1cm,HF=4cm. Tính DE, DF?
Cho tam giác DEF vuông tại D có đường cao DH, DE=15cm, DF=20cm
a) Tính EF,DH,EH,HF
b) Tính so đo góc E, góc F
Bài 3. Cho ∆DEF vuông tại D, kẻ đường cao DH. Biết DH = 12cm, EF = 25cm. Tính DF, DE.
Cho tam giác DEF vuông tại D, đường cao DH. Hãy tính lần lượt độ dài các đoạn EF,DH nếu biết:
a)DE=3cm; DF=4cm
b)DE=12cm;DF=9cm
c)DE=12cm;DF=5cm
Cho tam giác DEF vuông tại D, đường cao DH. Gọi I. K lần lượt là hình chiếu của điểm H trên các cạnh DE và DF. Biết FH = 4cm, HE = 9cm.
a, Tính DE, DF, IK
b, Chứng minh: DI . DE = DK . DF
c, Gọi M, N lần lượt là trung điểm của HE và HF. Tính diện tích tứ giác IKMN.
Cho \(\Delta\)DEF vuông tại D, đường cao DH.Biết DE=15cm, EH=9cm
a. Tính EF, HF, DF
b. Tính diện tích, chu vi của tam giác DEF và đường trung tuyến DM
c. Kẻ đường cao HK của tam giác DHE. Tính HK