Cho tam giác ABC vuông tại A, kẻ đường cao AH (H thuộc BC). Biết AB = 6cm; AC = 8cm.
a. Chứng minh: tam giác HBA đồng giạng với tam giác ABC
b. Tính BC, AH, BH.
c. Kẻ BD là đường phân giác trong của góc ABC (D thuộc AC). Gọi I là giao điểm của BD và AH. Tính tỉ số diện tích của tam giác ABD và tam giác BCD
d. Chứng minh rằng: AD.AI = CD.HI
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)