Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tuyết Ảnh Băng

Cho tam giác ABC, vẽ cung tròn tâm O đường kính BC, nó cắt 2 cạnh AB, AC theo thứ tự ở D,E

a) Chứng minh: CD vông góc AB Và BE vuông góc AC

b) Chứng minh: 4 điểm B, D, E, C cùng thuộc một đường tròn tâm I

c) Gọi K là giao điểm của BE và CD. Chứng minh AK vông góc BC

Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 15:21

a: Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

hay CD\(\perp\)AB

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

hay BE\(\perp\)AC

b: Xét tứ giác BDEC có 

\(\widehat{BDC}=\widehat{BEC}=90^0\)

nên BDEC là tứ giác nội tiếp

c: Xét ΔBAC có

BE là đường cao

CD là đường cao

BE cắt CD tại K

Do đó: K là trực tâm

=>AK\(\perp\)CB


Các câu hỏi tương tự
Ánh Loan
Xem chi tiết
Ác Quỷ Bóng Đêm
Xem chi tiết
Hoàng Linh Hương
Xem chi tiết
nghiêm nam
Xem chi tiết
Linh Ngô
Xem chi tiết
Hải Nam Xiumin
Xem chi tiết
wary reus
Xem chi tiết
Phan Thị Hồng Ngọc
Xem chi tiết
Linh Ngô
Xem chi tiết