Để phương trình có 2 nghiệm thì:
\(\Delta\ge0\)
\(m^2+10m+25-8m-24\ge0\)
\(m^2+2m+1\ge0\)
\(\left(m+1\right)^2\ge\forall m\) => Pt đã cho có 2 nghiệm với mọi giá trị m.
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=2m+6\end{matrix}\right.\)
Có:
\(x_1^2+x_2^2=35\) (đưa cái đề đàng hoàng vào.-.)
<=> \(\left(x_1+x_2\right)^2-2x_1x_2=35\)
<=> \(\left(m+5\right)^2-2.\left(2m+6\right)=35\)
<=> \(m^2+10m+25-4m-12-35=0\)
<=> \(m^2+6m-22=0\)
delta' = 32 +22 = 31 > 0
=> \(\left\{{}\begin{matrix}m_1=-3+\sqrt{31}\\m_2=-3-\sqrt{31}\end{matrix}\right.\)