Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn thị kim cúc

Cho biểu thức P =5x²+y²-2x(y+8)+2023.tìm giá trị nhỏ nhất

Toru
1 tháng 11 2023 lúc 21:41

\(P=5x^2+y^2-2x(y+8)+2023\\=5x^2+y^2-2xy-16x+2023\\=(x^2-2xy+y^2)+(4x^2-16x+16)+2007\\=(x-y)^2+4(x^2-4x+4)+2007\\=(x-y)^2+4(x-2)^2+2007\)

Ta thấy: \(\left(x-y\right)^2\ge0\forall x;y\)

              \(4\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow (x-y)^2+4(x-2)^2\ge0\forall x;y\\\Rightarrow P=(x-y)^2+4(x-2)^2+2007\ge2007\forall x;y\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}x-y=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=2\end{matrix}\right.\Leftrightarrow x=y=2\)

Vậy \(Min_P=2007\) khi \(x=y=2\).

\(\text{#}Toru\)

Nguyễn Lê Phước Thịnh
1 tháng 11 2023 lúc 21:43

\(P=5x^2+y^2-2x\left(y+8\right)+2023\)

\(=x^2-2xy+y^2+4x^2-16x+2023\)

\(=\left(x-y\right)^2+4x^2-16x+16+2007\)

\(=\left(x-y\right)^2+\left(2x-4\right)^2+2007>=2007\)

Dấu = xảy ra khi x-y=0 và 2x-4=0

=>x=y=2

Kiều Vũ Linh
1 tháng 11 2023 lúc 21:45

P = 5x² + y² - 2x(y + 8) + 2023

= 4x² + x² + y² - 2xy - 16x + 16 + 2007

= (x² - 2xy + y²) + (4x² - 16x + 16) + 2007

= (x - y)² + (2x - 4)² + 2007

Do (x - y)² ≥ 0 với mọi x, y R

(2x - 4)² ≥ 0 với mọi x R

⇒ (x - y)² + (2x - 4)² ≥ 0 với mọi x, y ∈ R

⇒ (x - y)² + (2x - 4)² + 2007 ≥ 2007 với mọi x, y ∈ R

Vậy GTNN của P là 2007 khi x = y = 2


Các câu hỏi tương tự
Hoàng văn tiến
Xem chi tiết
Hoàng văn tiến
Xem chi tiết
Lê Thị Cẩm Giang
Xem chi tiết
Hai Duong
Xem chi tiết
Đạt Phạm
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Diệu Thảo Channel
Xem chi tiết
Muichirou- san
Xem chi tiết
cô bé thì sao nào 992003
Xem chi tiết