cho △ABC⊥A, đường cao AH, kẻ HE⊥AB, HF⊥AC
a) c/m: \(AH=EF\)
b) kẻ các đường thẳng qua E, F cắt BC lần lượt tại M và N. Gọi O là trung điểm AH. c/m
1) \(OM//AB\) và \(MN=\dfrac{1}{2}BC\)
2) \(\widehat{MON}=90^0\)
3) \(S_{OMN}=\dfrac{1}{4}S_{ABC}\)
4) \(S_{MEFN}=\dfrac{1}{2}S_{ABC}\)
5) \(\dfrac{BE}{CF}\dfrac{AB^3}{AC^3}\)
6) 4 điểm B, E,F,C thẳng hàng
lm nhanh giúp mk nhé mk đang cần gấp
a) Xét tứ giác AEHF có
\(\widehat{FAE}=90^0\)
\(\widehat{AFH}=90^0\)
\(\widehat{AEH}=90^0\)
Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=EF(hai đường chéo)