\(=x\left(x^2+2x\sqrt{x}+2\right)=0\)
\(\Leftrightarrow x=0\)
ĐK : \(x\ge0\)
P/t \(\Leftrightarrow x\left(x^2+2\sqrt{x}.x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2x\sqrt{x}+2=0\left(PTVN;x\ge0\right)\end{matrix}\right.\)
\(=x\left(x^2+2x\sqrt{x}+2\right)=0\)
\(\Leftrightarrow x=0\)
ĐK : \(x\ge0\)
P/t \(\Leftrightarrow x\left(x^2+2\sqrt{x}.x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2x\sqrt{x}+2=0\left(PTVN;x\ge0\right)\end{matrix}\right.\)
Giải phương trình
a) \(\sqrt{2x-5}=\sqrt{x+3}\)
b) \(\sqrt{2x^2-x+4}-2=x\)
c) \(\sqrt{1-x}=\sqrt{3x+2}\)
d) \(\sqrt{2x-3}=\sqrt{x-2}\)
e) \(\sqrt{x-2}-\sqrt{3+2x}=0\)
1, \(\sqrt{x-1}+\sqrt{x-4}=5\)
2, \(2x-7\sqrt{x}+5=0\)
3, \(\sqrt{2x+1}+\sqrt{x-3}=2\sqrt{x}\)
4, \(x-4\sqrt{x}+2021\sqrt{x-4}+4=0\)
5, \(\sqrt{2x-3}-\sqrt{x+1}=7\left(4-x\right)\)
giải phương trình
a) \(\left(x+\frac{5-x}{\sqrt{x}+1}\right)^2+\frac{16\sqrt{x}\left(5-x\right)}{\sqrt{x}+1}-16\)\(=0\)
b) \(\sqrt{2x-\frac{3}{x}}+\sqrt{\frac{6}{x}-2x}=1+\frac{3}{2x}\)
c) \(\sqrt{2x+1}+\frac{2x-1}{x+3}-\left(2x-1\right)\sqrt{x^2+4}-\sqrt{2}=0\)
d) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
1) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
2) \(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
giải phương trình:
a) \(\sqrt{x+6}-\sqrt{x-2}=2\)
b) \(2\sqrt{x-3}-2x+3=0\)
\(\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right)\): \(\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)(với x >0, x khác 4)
giải pt
a) \(\frac{\sqrt{x^3+1}}{x+3}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
b) \(\sqrt[3]{2x+1}+\sqrt[3]{2x+2}+\sqrt[3]{2x+3}=0\)
Giải phương trình:
\(a,\sqrt{5x^3-1}+\sqrt[3]{2x-1}+x-4=0\)
\(b,\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-3\)
\(c,\sqrt[3]{x^2}-2\sqrt[3]{x}-\left(x-4\right)\sqrt{x-7}-3x+28=0\)
Giải các phương trình:
\(a,2x^2+1+\sqrt{8x^3+1}=0\)
\(2x+9+\sqrt{4x^2+36x+17}=\frac{8}{x}\)
\(c,\sqrt[3]{2x-1}-\sqrt{2x}=\sqrt[3]{x^3+1}-x\)
\(d,\sqrt{3x+1}-+\sqrt{6-x}+3x^2-14x-8=0\)
\(e,2\sqrt{\frac{x^2+x+1}{x+4}}+x^2-4=\frac{2}{\sqrt{x^2+1}}\)