Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x^2-\left(m+1\right)x-m+3=0\)
\(\Leftrightarrow x^2-\left(2m+2\right)x-2m+6=0\)
\(\text{Δ}=\left(2m+2\right)^2-4\left(-2m+6\right)\)
\(=4m^2+8m+4+8m-24\)
\(=4m^2+16m-20\)
\(=4\left(m^2+4m-5\right)\)
\(=4\left(m+5\right)\left(m-1\right)\)
a: Để (P) không cắt (d) thì (m+5)(m-1)<0
hay -5<m<1
b: Để (P) cắt (d) tại hai điểm phân biệt thì (m+5)(m-1)>0
=>m>1 hoặc m<-5
c: Để (P) tiếp xúc với (d) thi (m+5)(m-1)=0
=>m=-5 hoặc m=1