Trong mặt phẳng tọa độ Oxy cho điểm M(1,-1)và hai đường thẳng có phương trình (d1):x - y - 1 = 0 và (d2) 2x+y-5=0. Gọi A là giao điểm của 2 đường thẳng trên . Biết rằng có 2 đường thẳng (d) đi qua M cắt 2 đường thẳng trên tại B,C sao cho tam giác ABC có BC=3AB .Tìm phương trình đường thẳng của 2 đường thẳng đó
Cho 3 đường thẳng d1:x-2y+5=0, d2: 2x-3y+7=0, d3: 3x+4y-1=0. Viết phương trình đường thẳng d đi qua giao điểm của d1 và d2, và song song với d3.
1,Lập phương trình đường thẳng \(\Delta\) đi qua điểm d1: x + 3y - 1 = 0 ; d2: x - 3y - 5 = 0 và vuông góc đường thẳng d3:2x - y + 7 =0
2,Đường thẳng \(\Delta\) đi qua giao điểm của 2 đường thẳng d1: 2x + y - 3 = 0 và d2: x - 2y + 1 = 0 đồng thời tạo với đường thẳng d3: y - 1 = 0 một góc 45* của phương trình
cho hai đường thẳng d1:2x+y-2=0;d2:x-y-3=0
a) tìm tọa độ giao điểm của d1 và d2
b) viết phương trình đường thẳng d đi qua N(2;4) cắt d1 và d2 lần lượt tại A và B sao cho N là trung điểm của AB
trong hệ trục Oxy, cho điểm A(1;3). Hai đường thẳng : (d1) x+2y-3=0 và (d2) x+2y-5 =0
Viết phương trình đường thẳng d đi qua điểm A, cắt d1 và d2 lần lượt tại B và C, sao cho diện tích tam giác OBC = 5/4
[Các bạn giúp mình với nhéeeeee]
Viết phương trình đường thẳng d qua M(1;0) và cắt d1: x+y+1=0 và d2: x-2y+2=0 lần lượt tại A, B sao cho MB=3MA.
Viết phương trình đường thẳng đi qua M(2;-1) cắt d1: x + 2y + 1 = 0 tại A, d2: 3x - 2y - 3=0 tại B, I = d1 giao d2
a) Tam giác IAB cân tại I
b) Tam giác IAB cân tại A
c) MA = MB
d) MA = 2MB
Cho 2 đường thẳng
d1 : \(\left\{{}\begin{matrix}x=4-3t\\y=-1+2t\end{matrix}\right.\) và d2 : x+2y-1=0
a.Tìm tọa độ giao điểm A của d1 và d2
b. Viết ptts và pttq của:
- Đường thẳng đi qua A và vuông góc với d1
- Đường thẳng đi qua A và song song với d2
Trong một mặt phẳng với hệ trục tọa độ oxy cho 2 đường thẳng d1: x+2y-5=0; d2 3x+my-1=0. Điều kiện của tham số m để góc tạo bởi hai đương thẳng bằng 45 độ.