Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A l ; 0 ; − 3 , B − 3 ; − 2 ; − 5 . Biết rằng tập hợp các điểm M trong không gian thỏa mãn đẳng thức A M 2 + B M 2 = 30 là một mặt cầu (S). Tọa độ tâm I và bán kính R của mặt cầu (S) là
A. I − 2 ; − 2 ; − 8 ; R = 3
B. I − 1 ; − 1 ; − 4 ; R = 6
C. I − 1 ; − 1 ; − 4 ; R = 3
D. I − 1 ; − 1 ; − 4 ; R = 30 2
Trong mặt phẳng tạo độ Oxyz, cho bốn điểm A(0;-1;2), B(2;-3;0), C(-2;1;1), D(0;-1;3). Gọi (L) là tập hợp tất cả các điểm M trong không gian thỏa mãn đẳng thức M A → . M B → = M C → . M D → = 1 . Biết rằng (L) là một đường tròn, đường tròn đó có bán kính r bằng bao nhiêu?
A. r = 11 2
B. r = 7 2
C. r = 3 2
D. r = 5 2
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A 1 ; 0 ; − 3 , B − 3 ; − 2 ; − 5 . Biết rằng tập hợp các điểm M trong không gian thỏa mãn đẳng thức A M 2 + B M 2 = 30 là một mặt cầu (S), tọa độ tâm I và bán kính R của mặt cầu (S) là
A. I − 2 ; − 2 ; − 8 , R = 3
B. I − 1 ; − 1 ; − 4 , R = 6
C. I − 1 ; − 1 ; − 4 , R = 3
D. I − 1 ; − 1 ; − 4 , R = 30 2
Trong không gian với hệ tọa độ Oxyz, cho điểm M thuộc mặt cầu (S): ( x - 3 ) 2 + ( y - 3 ) 2 + ( z - 2 ) 2 = 9 và ba điểm A(1;0;0);B(2;1;3);C(0;2;-3). Biết rằng quỹ tích các điểm M thỏa mãn MA 2 + 2 . MB → . MC → = 8 là đường tròn cố định, tính bán kính r đường tròn này.
A. r= 3 .
B. r= 3.
C. r= 6
D. r= 6
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Δ : x − 1 1 = y 2 = z + 3 − 2 và mặt cầu S : x 2 + y 2 + z 2 − 4 x + 4 y − 6 z + 12 = 0 có tâm I và bán kính R. Gọi M thuộc đường thẳng ∆ v à M I = 4 R . Khi đó hoành độ nguyên của điểm M là
A. 1
B. 2
C. -2
D. 3
Trong không gian Oxyz , gọi (S ) là mặt cầu đi qua D(0;1; 2) và tiếp xúc với các trục Ox,Oy,Oz tại các điểm A(a,0,0), B(0,b,0), C(0,0,c), trong đó a,b,c ∈ R \ 0 ; 1 . Tính bán kính của (S )?
A. 3 2 2
B. 5
C. 5 2
D. 5 2
Trong không gian với hệ tọa độ Oxyz, cho điểm M 59 9 ; - 32 9 ; 2 9 và mặt cầu (S) có phương trình x 2 + y 2 + z 2 - 2 x - 4 y - 6 z - 11 = 0 . Từ điểm M kẻ các tiếp tuyến MA,MB,MC đến mặt cầu (S), trong đó A,B,C là các tiếp điểm. Mặt phẳng (ABC) có phương trình px + qy + z + r = 0. Giá trị của biểu thức p+q+r
A. -4
B. 4
C. 1
D. 36
Trong không gian với hệ tọa độ Oxyz, xét các điểm A 0 ; 0 ; 1 , B m ; 0 ; 0 , C 0 ; n ; 0 , D 1 ; 1 ; 1 với m > 0, n > 0 và m + n = 1 . Biết rằng khi m, n thay đổi, tồn tại một mặt cầu cố định tiếp xúc với mặt phẳng (ABC) và đi qua D. Tính bán kính R của mặt cầu đó.
A. R = 1
B. R = 2 2
C. R = 3 2
D. R = 3 2
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(0;1;2), B(2;-2;1), C(-2;0;1) và mặt phẳng ( P ) : 2 x + 2 y + z - 3 = 0 . Tọa độ điểm M thuộc mặt phẳng (P) sao cho M cách đều ba điểm A, B, C là
A. M(-7;3;2)
B. M(2;3;-7)
C. M(3;2;-7)
D. M(3;-7;2)
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu S : x 2 + y 2 + z 2 + a x + b y + c z + d = 0 có bán kính R = 19 , đường thẳng d : x = 5 + t y = - 2 - 4 t z = - 1 - 4 t và mặt phẳng ( P ) : 3 x - y - 3 z - 1 = 0 . Trong các số {a,b,c,d} theo thứ tự dưới đây, số nào thỏa mãn a + b + c + d = 43, đồng thời tâm I của (S) thuộc đường thẳng d và (S) tiếp xúc với (P)?
A. {-6;-12;-14;75}
B. {6;10;20;7}
C. {-10;4;2;47}
D. {3;5;6;29}