Trong không gian Oxyz, mặt phẳng α : 2 x - 3 z + 1 = 0 có một vectơ pháp tuyến là
A. n 1 → = 2 ; 0 ; - 3
B. n 1 → = 2 ; - 3 ; 1
C. n 1 → = 2 ; - 3 ; 0
D. n 1 → = 2 ; 0 ; 3
Trong không gian Oxyz, cho mặt phẳng ( α ) : 2 x + y - 2 z - 2 = 0 , đường thẳng d : x + 1 1 = y + 2 2 = z + 3 2 và điểm A(1/2; 1; 1). Gọi ∆ là đường thẳng nằm trong mặt phẳng ( α ) , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng Oxy tại điểm B. Độ dài đoạn thẳng AB bằng
A. 7 / 3
B. 7 / 2
C. 21 / 2
D. 3 / 2
Trong không gian Oxyz, cho mặt phẳng P : 3 x - y + z + 1 = 0 . Trong các vectơ sau, vectơ nào không phải là vectơ pháp tuyến của mặt phẳng (P)?
A. n 1 → = - 3 ; - 1 ; - 1
B. n 4 → = 6 ; - 2 ; 2
C. n 3 → = - 3 ; 1 ; - 1
D. n 2 → = 3 ; - 1 ; 1
Trong không gian Oxyz, một véctơ pháp tuyến của mặt phẳng ( α ) :2x-y-z-3=0 là
A. n 1 → (1;1;1).
B. n 1 → (2;-1;-1).
C. n 1 → (-1;-1;-3).
D. n 1 → (1;-2;-2).
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(-1;-2;2), B(-3;-2;0) và mặt phẳng (P):x+3y-z+2=0. Vectơ chỉ phương của đường thẳng d là giao tuyến của mặt phẳng (P) và mặt phẳng trung trực của đoạn AB có tọa độ là
A. u → = 1 ; - 1 ; 0
B. u → = 2 ; 3 ; - 1
C. u → = 1 ; - 2 ; 0
D. u → = 3 ; - 2 ; - 3
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 0; 0), B(0; -2; 0), C(0; 0; -5). Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (ABC)
A. n → = ( 1 ; 1 2 ; 1 5 )
B. n → = ( 1 ; - 1 2 ; - 1 5 )
C. n → = ( 1 ; - 1 2 ; 1 5 )
D. n → = ( 1 ; 1 2 ; - 1 5 )
Trong không gian Oxyz cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 27 . Gọi ( α ) là mặt phẳng đi qua hai điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), đáy là (C) có thể tích lớn nhất. Biết mặt phẳng ( α ) có phương trình dạng ax+by-z+c= 0, khi đó a-b+c bằng:
A. -4.
B. 8
C. 0
D. 2
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (α):2x-3z+2=0. Vectơ nào dưới đây là vectơ pháp tuyến của (α)?
A. n → 2 = 2 ; 0 ; - 3
B. n → 3 = 2 ; 2 ; - 3
C. n → 1 = 2 ; - 3 ; 2
D. n → 4 = 2 ; 3 ; 2
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ∆ là giao tuyến của hai mặt phẳng P : z - 1 = 0 và Q : x + y + z - 3 = 0 . Gọi d là đường thẳng nằm trong mặt phẳng P , cắt đường thẳng x - 1 1 = y - 2 - 1 = z - 3 - 1 và vuông góc với đường thẳng . Phương trình của đường thẳng d là
A. x = 3 + t y = t z = 1 + t
B. x = 3 - t y = t z = 1
C. x = 3 + t y = t z = 1
D. x = 3 + t y = - t z = 1 + t